
Introduction

A constructive semantic model

Formal properties

Conclusion

Constructive Polychronous Systems

Jens Brandt Mike Gemünde Klaus Schneider (Uni Kaiserslautern)
Sandeep Shukla (Virginia Tech) Jean-Pierre Talpin (INRIA)

To appear in LFCS’13

Partially supported by INRIA project Polycore, by USAFRL grant FA8750-11-1-0042 and DFG.

1

Introduction

A constructive semantic model

Formal properties

Conclusion

Who, when, where, ... ?

..., what ?

..., why ?

..., how ?

Synchronous Languages

Esterel, Lustre, Signal, . . .
A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic
and R. de Simone. The Synchronous Languages Twelve Years Later.
Proceedings of the IEEE, 2003.

domain-specific languages for embedded system design
discrete control programs for continuous, physical environments
express concurrency in a user-friendly manner
same mathematical foundation: “the synchronous hypothesis”, . . .

2

Introduction

A constructive semantic model

Formal properties

Conclusion

Who, when, where, ... ?

..., what ?

..., why ?

..., how ?

..., what ?

same mathematical foundation: “the synchronous hypothesis”, but:
different visuals: block diagrams, hierachical automata, . . .
different styles: imperative, dataflow, . . .
different models: reactive, synchronous, polychronous, . . .
different properties: constructive, determinism, endochrony, . . .

Goal

Use the Signal/Polychrony toolset in the Averest/Quartz environment

3

Introduction

A constructive semantic model

Formal properties

Conclusion

Who, when, where, ... ?

..., what ?

..., why ?

..., how ?

Why ? ...

... use the Polychrony toolset in the Averest environment

Gain productivity from communication and computation scheduling
from automatic synthesis

Write sound functional modules
Automate scheduler synthesis

Implied programming methodology
Specify/program imperative reactive modules in Quartz
Synthesize their scheduler from a Signal network specified by
constraints, interfaces, contracts

Needs

A constructive framework encompassing reactive Quartz modules
and endochronous Signal networks

4

Introduction

A constructive semantic model

Formal properties

Conclusion

Who, when, where, ... ?

..., what ?

..., why ?

..., how ?

How ?

A common constructivity framework

Stabilization of electric circuits [Huffman, 7’1, Malik, ’94]
Electrical semantics of Esterel [Shiple, ’96, Berry, ’99]
Constructive Boolean circuits [Mendler, Shiple, Berry, ’12]

Goal
A lattice and fixpoint theory for clocked streams
A common semantic framework for Quartz and Signal
An executable structured operational semantics of Signal

5

Introduction

A constructive semantic model

Formal properties

Conclusion

Who, when, where, ... ?

..., what ?

..., why ?

..., how ?

Starting point

Game-theoretical micro-automata for Signal [Benveniste et al., 2000]

[[x !b y]] =

Nota : Clearly, theorem 5 provides us with a su�cient condition, this con-
dition is not necessary. Furthermore, the rules for inferring scheduling speci-
fications as causality constraints is bound to the syntax, not to the semantics
of the program. In particular, from statement “ if b then x = u”, we choose
to infer dependency u b � hu > x but not the symmetric one in which x
and u are exchanged. This means that, while P may not satisfy the assump-
tions of theorem 5 for a given syntactic form of P, it may satisfy them after a
proper rewriting into a semantically equivalent form. Here, semantic equiv-
alence means identical runs when scheduling specifications are discarded.

Proof : It is organized into several steps.

1. With the formula x b > y we associate the following automaton :

x,y
set x

set y

set y

set x

set x
set b

set x
x,b,y

or Fb =

x y

x,y b,x

b=T

Transitions are labelled with actions. Label “set x” indicates that vari-
able x is set to an arbitrary value of its (extended) domain Dx [{?}.
States are labelled with those variables that are ?, i.e., have not been
set. This automaton is the most permissive one with the following
properties :

(a) states are valued with configurations of the triple (x, b, y) that are
compatible with the scheduling constraint x b > y.

(b) Variables are set sequentially.

(c) All variables are eventually set.

55

First sub-goal

) Define a complete lattice / fixpoint theory for multi-clocked systems

6

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

A lattice for the status of variables/signals

? signal status is unknown
? signal is absent or inhibited
> signal is present or activated
 signal is inconsistent

?

$$
? //

55

> //

$$

0 //

1

::

Basic principle
A complete lattice of signal and variable status
Monotonic functions to define status transitions
A constructive fixed-point theory

7

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Value of a boolean operation

Start from the truth table

^D ? ? > 0 1
?
?
>
0 0 0
1 0 1

8

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Status of a boolean operation

Fill it with all possible errors

^D ? ? > 0 1
?
?
>
0 0 0
1 0 1

9

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Status of a boolean operation

Complete by being positive (monotonic)

^D ? ? > 0 1
? ? ? > 0 >
? ? ?
> > > 0 >
0 0 0 0 0
1 > > 0 1

10

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Quartz as synchronous guarded actions

Model Quartz programs as guarded actions on (continuous) variables

p, q ::= �) x = ⌧ (immediate assignment)
| �) next(x) = ⌧ (delayed assignment)
| init(x) = ⌧ (initialization)

| p || q (composition)
| var x : p default v (action block)

11

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Small-step semantics s, p * s 0, q of Quartz (actions)

For ? 2 {and, or}, define s, x ? y * v iff v = s(x)?s(y) 2 B

s, � * 0
s, �) x = ⌧ * s, done (�) x = ⌧)

s, � * 1 s, ⌧ * v
s, �) x = ⌧ * s] (x , v), done (�) x = ⌧)

12

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Small-step semantics of Quartz (delayed actions)

s, init(x) = v * s] (x , v), ()

s, � * 0
s, �) next(x) = ⌧ * s, done (�) next(x) = ⌧)

s, � * 1 s, ⌧ * v
s, �) next(x) = ⌧ * s, done (init(x) = v || �) next(x) = ⌧)

13

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Small-step semantics of Quartz (scheduling)

s 0 = (s(x) 2 D)?s, s] (x , v) w = (x 2 M)?s 0(x), v
s, var x : done (p) default v * s 0, done (var x : p default w)

s, p * s 0, p0

s, p || q * s 0, p0 || q
s, p * s 0, p0

s, q || p * s 0, q || p0

s, done p || done q * s, done (p || q)

14

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Semantics s, p * s 0, q for equations over signals (function)

Model a polychronous network as equations over clocked signals

s(x , y , z) *
and

(a, b, c)
s, x := y and z * s] (x , a)(y , b)(z , c), x := y and z

Propagate knowledge of absence

s(x) s(y) s(z) a b c
? ?/? ?/? ? ? ?
?/? ? ?/? ? ? ?
?/? ?/? ? ? ? ?

15

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Equations over signals (function)

s(x , y , z) *
and

(a, b, c)
s, x := y and z * s] (x , a)(y , b), (z , c), x := y and z

Propagate knowledge of presence

s(x) s(y) s(z) a b c
> ?/> ?/> > > >
?/> > ?/> > > >
?/> ?/> > > > >

16

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Equations over signals (function)

s(x , y , z) *
and

(a, b, c)
s, x := y and z * s] (x , a)(y , b), (z , c), x := y and z

Progress by computations

s(x) s(y) s(z) a b c
?/> a ?/> > a >
?/> ?/> a > > a
?/> b a a ^ b b a

Notice that *
and

is monotonic and increasing

⇤
a, b 2 B

17

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Equations over signals (sampling)

s(x , y , z) *
when

(a, b, c)

Progress by the logic of absence, presence and by computations

s(x) s(y) s(z) a b c
? ?/? ?/? ? ? ?
?/? ? ?/? ? ? ?
?/? ?/? ? ? ? ?
?/? X 0 ? X 0
> ?/> b > > a t 1
?/> a 1 a a 1

⇤
Rules for absence/presence encode the clock calculus

18

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Equations over signals (merging)

s(x , y , z) *
default

(a, b, c)

Progress by the logic of absence, presence and by computations

s(x) s(y) s(z) a b c
? ?/? ?/? ? ? ?
?/? ? ? ? ? ?
? > X

⇤ > > X

? X > > X >
?/> a X a a X

?/> ? a a ? a

⇤
X is the “don’t care”, i.e., any status except error

19

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Equations over signals (delay)

s(x , y), a *$init

(b, c , d)
s, x := y $init a * s] (x , b)(y , c), x := y $init d

Progress by the logic of absence, presence and by computations

s(x) s(y) a b c d
? ?/? a ? ? a
?/? ? a ? ? a
> ?/> a a > a
?/> > a a > a
?/? b a a b b
a b a a b b

... Wait!

20

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Equations over signals (delay)

.... Where you listening ?

s(x , y), a *$init

(b, c , d)
s, x := y $init a * s] (x , b)(y , c), x := y $init d

It’s not quite
s(x) s(y) a b c d
?/? b a 6v a b b
a b a 6v a b b

but more exactly

s(x) s(y) a
t�1

a
t

b c a
t�1

d
?/? b a ?/> v a b a b
a b a ?/> v a b a b

21

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Equations over signals (a run)

c := o $init 1 || o := n default
xz }| {

c � 1 || n =̂when

yz }| {
c = 0

(c , ?)(n, ?)(o,>•)(x , ?)(y , ?) *$init

(c , 1•) (n, ?) (o,>) (x , ?) (y , ?)
*

sub

(c , 1) (n, ?) (o,>)(x , 0•) (y , ?)
*

eq

(c , 1) (n, ?) (o,>) (x , 0) (y , ff •)
*=̂ (c , 1) (n,?•)(o,>) (x , 0) (y , ff)
*

default

(c , 1) (n,?) (o, 0•) (x , 0) (y , ff)
*$init

(c , 1) (n,?) (o, 0) (x , 0) (y , ff)

c := o $init 0• || . . .

22

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

From synchrony to asynchrony

Model FIFO buffers ...

w ::= ✏ (empty)
| a.w (read)
| w .a (write)

... to define the interface of a process p with the network P

P,Q ::= hs, pi | P k Q (network)

... and get something like that: progress with * and writeout with +

E , hs
0

, pi *⇤ F , hs, qi +⇤ G , hs
0

, ri (big step)

s

0

= {(x, ?) | x 2 V (p)}

23

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Interface semantics E , P * F , Q (trigger and read)

s, p * t, q
E , hs, pi * E , ht, qi (embedding rule)

x 2 T (p)
E , hs] (x , ?), pi*E , hs] (x ,>), pi (trigger execution)

x 2 I (p)
E] (x , a.w), hs] (x ,>), pi*E] (x ,w), hs] (x , a), pi (read inputs)

24

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Interface semantics E , P + F , Q (write and sync)

x 2 O(p) ^ a 2 B
E] (x ,w), hs] (x , a), pi + E] (x ,w .a), hs, pi (write output)

x 62 O(p) _ a = ?
E , hs] (x , a), pi + E , hs] (x , ?), pi (filter locals, absence)

25

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Interface semantics E , P + F , Q (reactive modules)

Interface semantics of Quartz is much simpler:

(read) E] (x , a.w), hs, pi+E] (x ,w), hs
x

] (x , a), pi x 2 I (p)

(write) E] (x ,w), hs] (x , a), pi+E] (x ,w .a), hs
x

] (x , ?), pi x 2 O(p)

(mask) E , hs, pi+E , hs
x

] (x , ?), pi x 2 L(p)

(restart) E , hs, done pi+E , hs, pi

26

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

Equations over clocked signals (interface with streams)

c := o $init 0 || o := n default
xz }| {

c � 1 || n =̂when

yz }| {
c = 0

...
[(n, 42)(o, ✏)] `(c , ?) (n, ?) (o,>) (x , ?) (y , ?)

*$init

[(n, 42)(o, ✏)] `(c , 0) (n, ?) (o,>) (x , ?) (y , ?)
*

sub

[(n, 42)(o, ✏)] `(c , 0) (n, ?) (o,>)(x ,�1)(y , ?)
*

eq

[(n, 42)(o, ✏)] `(c , 0) (n, ?) (o,>)(x ,�1)(y , tt)
*=̂ [(n, 42)(o, ✏)] `(c , 0) (n,>) (o,>)(x ,�1)(y , tt)
* [(n, ✏•)(o, ✏)] `(c , 0)(n, 42•)(o,>)(x ,�1)(y , tt) (read)
*

default

[(n, ✏)(o, ✏)] `(c , 0) (n, 42) (o, 42)(x ,�1)(y , tt)
*$init

[(n, ✏)(o, ✏)] `(c , 0) (n, 42) (o, 42)(x ,�1)(y , tt)
+⇤ [(n, ✏)(o, 42)•]`()• (write)

c := o $init 42 || . . .

27

Introduction

A constructive semantic model

Formal properties

Conclusion

A complete lattice of variable status

Quartz and synchronous guarded actions

Signal and equations over signals

From synchrony to asynchrony

A constructive GALS semantics

E ,P * F ,Q
E ,P ! E ,Q (step)

E , hs, pi +⇤ F , hs 0, qi
E , hs, pi ! F , hs 0, qi (flush)

E ,P ! E 0,P 0

E ,P k Q ! E 0,P 0 k Q
E ,P ! E 0,P 0

E ,P k Q ! E 0,P 0 k Q (schedule)

28

Introduction

A constructive semantic model

Formal properties

Conclusion

Synchronous constructivity

Asynchronous constructivity

Stuttering robustness

Formal properties

Definition (Synchronous constructivity)

A module p is synchronous constructive iff.
for all s

0

= {(x , a) | x 2 I (p), a 2 B} [{(y , ?) | y 2 V (p) \ I (p)}
we have s

0

, p *⇤ s, q and s is defined on B (i.e. s = lfp*
p

(s
0

))

Proposition
If p is synchronously constructive then p is reactive⇤

⇤
a.k.a. synchronously deterministic

29

Introduction

A constructive semantic model

Formal properties

Conclusion

Synchronous constructivity

Asynchronous constructivity

Stuttering robustness

Formal properties

Definition (Asynchronous constructivity)

A process p is asynchronously constructive iff.
for any environment E of non-empty streams defined on V (p)
and s

0

= {(x , ?) | x 2 V (p)}
we have E , hs

0

, pi *⇤ F , hs, qi
and s is defined on B? (i.e. (F , s) = lfp*

p

(E , s
0

)).

Proposition
If p is asynchronously constructive then p is asynchronously deterministic

30

Introduction

A constructive semantic model

Formal properties

Conclusion

Synchronous constructivity

Asynchronous constructivity

Stuttering robustness

No reaction to absence

A process should stutter when its triggers are inhibited

x 2 T (p)
E , hs] (x , ?), pi*E , hs] (x ,?), pi

Definition (Stuttering)

A process p is robust to stuttering iff.
for s = {(x ,?) | x 2 T (p)} [{(x , ?) | x 2 V (p) \ V (p)}
we have hs, pi *⇤ hs 0, pi and s 0 = {(x ,?) | x 2 V (p)}

Note: this captures (weakly) endochronous systems

31

Introduction

A constructive semantic model

Formal properties

Conclusion

Discussions and future works

An executable operational semantics of Signal and Quartz
simulates scheduling of data-flow equations
takes into account their interface with streams

A common constructive model for Quartz and Signal

) Extend constructivity analysis to polychronous (concurrent) systems
) A constructivity framework for abstract interpretation

32

Introduction

A constructive semantic model

Formal properties

Conclusion

Oversampling and clock domains

Define the sum ⌃n

i=1

from the counter (triggered by o),

sigma(n, s) �
= (counter(n, o) || (i := (i$init 0) + o || s := i when (o = 1)) /i) /o

Sigma is triggered by o, and, equivalently

sigma0(n, s) �
= (counter(n, o) k (i := (i$init 0) + o || s := i when (o = 1)) /i) /o

33

