Constructive Polychronous Systems

Jens Brandt Mike Gemünde Klaus Schneider (Uni Kaiserslautern) Sandeep Shukla (Virginia Tech) Jean-Pierre Talpin (INRIA) • Esterel, Lustre, Signal, ...

Synchronous Languages

A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic and R. de Simone. *The Synchronous Languages Twelve Years Later*. Proceedings of the IEEE, 2003.

- domain-specific languages for embedded system design
- discrete control programs for continuous, physical environments
- express concurrency in a user-friendly manner
- same mathematical foundation: "the synchronous hypothesis", ...

To appear in LFCS'13

Partially supported by INRIA project Polycore, by USAFRL grant FA8750-11-1-0042 and DFG.

	Introduction A constructive semantic model Formal properties Conclusion	Who, when, where, ? , what ? , why ? , how ?	
, what ?			

- same mathematical foundation: "the synchronous hypothesis", but:
 - different visuals: block diagrams, hierachical automata, ...
 - different styles: imperative, dataflow,
 - different models: reactive, synchronous, polychronous, ...
 - different properties: constructive, determinism, endochrony,

Goal

Use the Signal/Polychrony toolset in the Averest/Quartz environment

- ... use the Polychrony toolset in the Averest environment
 - Gain productivity from communication and computation scheduling from automatic synthesis
 - Write sound functional modules
 - Automate scheduler synthesis
 - Implied programming methodology
 - Specify/program imperative reactive modules in Quartz
 - Synthesize their scheduler from a Signal network specified by constraints, interfaces, contracts

Needs

A constructive framework encompassing reactive Quartz modules and endochronous Signal networks

・ロト・(部)・(目)・(目)・ 目 の(の)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三 ののの

◆□▶ ◆□▶ ◆臣▶ ★臣▶ 臣 のへで

Starting point

• Game-theoretical micro-automata for Signal [Benveniste et al., 2000]

- A common constructivity framework
 - Stabilization of electric circuits [Huffman, 7'1, Malik, '94]
- Electrical semantics of Esterel [Shiple, '96, Berry, '99]
- Constructive Boolean circuits [Mendler, Shiple, Berry, '12]

Goal

- A lattice and fixpoint theory for clocked streams
- A common semantic framework for Quartz and Signal
- An executable structured operational semantics of Signal

Quartz and synchronous guarded activ Signal and equations over signals From synchrony to asynchrony

A lattice for the status of variables/signals

- op signal is present or activated $\frac{1}{2}$ signal is inconsistent

Basic principle

- A complete lattice of signal and variable status
- Monotonic functions to define status transitions
- A constructive fixed-point theory

First sub-goal

 \Rightarrow Define a complete lattice / fixpoint theory for multi-clocked systems

A constructive semantic Formal pro Con A complete lattice of variable status Quartz and synchronous guarded actions Signal and equations over signals From synchrony to asynchrony

Value of a boolean operation

Start from the truth table

$\wedge^{\mathcal{D}}$?	\perp	Т	0	1	4
?						
\perp						
Т						
0				0	0	
1				0	1	
£						

nd synchronous gua

Fill it with all possible errors

Q

Complete by being positive (monotonic)

$\wedge^{\mathcal{D}}$?	\perp	Т	0	1	\$
?	?	\perp	Т	0	Т	4
\perp	\perp	\perp	5	4	£	4
T	Т	4	Т	0	\top	4
0	0	4	0	0	0	4
1	Т	4	Т	0	1	4
ź	5	4	5	5	5	\$

	<ロ> <局> <目> <目> <目> <目> <目> <目> <日		< ㅁ > < 圖 > < 볼 > < 볼 > _ 볼 - '의 약소'
Introduction	9	Introduction	A complete lattice of uniphic status
A constructive semantic model Formal properties Conclusion	Quartz and synchronous guarded actions Signal and equations over signals From synchrony to asynchrony	A constructive semantic model Formal properties Conclusion	Quartz and synchronous guarded actions Signal and equations over signals From synchrony to asynchrony
uartz as synchronous guarde	ed actions	Small-step semantics $s, p \rightarrow s$	s', q of Quartz (actions)
Model Quartz programs as guarded a	actions on (continuous) variables	For $\star \in \{\text{and}, \text{or}\}$, define $s, x \in \{x, y\}$	$\star y ightarrow v ext{ iff } v = s(x) \star s(y) \in \mathbb{B}$

$$p, q ::= \gamma \Rightarrow x = \tau \qquad (\text{immediate assignment}) \\ | \gamma \Rightarrow \text{next}(x) = \tau \qquad (\text{delayed assignment}) \\ | \text{init}(x) = \tau \qquad (\text{initialization}) \\ | p | q \qquad (\text{composition})$$

|
$$p | q$$
 (composition)
| var x: p default v (action block)

$$\frac{s, \gamma \rightharpoonup 0}{s, \gamma \Rightarrow x = \tau \rightharpoonup s, \text{done } (\gamma \Rightarrow x = \tau)}$$

$$\frac{s, \gamma \rightharpoonup 1 \quad s, \tau \rightharpoonup v}{s, \gamma \Rightarrow x = \tau \rightharpoonup s \uplus (x, v), \text{done } (\gamma \Rightarrow x = \tau)}$$

12

11

e model Quartz and synchronous guarded actions operties Signal and equations over signals

Small-step semantics of Quartz (delayed actions)

$$s$$
, init $(x) = v
ightarrow s \uplus (x, v), ()$

 $\frac{s, \gamma \rightharpoonup 0}{s, \gamma \Rightarrow \operatorname{next}(x) = \tau \rightharpoonup s, \operatorname{done}(\gamma \Rightarrow \operatorname{next}(x) = \tau)}$

$$\frac{s, \gamma \rightharpoonup 1 \quad s, \tau \rightharpoonup v}{s, \gamma \Rightarrow \mathsf{next}(x) = \tau \rightharpoonup s, \mathsf{done} \; (\mathsf{init}(x) = v \,|\, \gamma \Rightarrow \mathsf{next}(x) = \tau)}$$

・ロト・日本・中国・ 中国・ シタの

A constructive semantic model
Formal properties
Conclusion Semantic set of variable status
Signal and equations over signals
From synchrony to asynchrony
Semantics
$$s, p \rightarrow s', q$$
 for equations over signals (function)

Model a polychronous network as equations over clocked signals

$$\frac{s(x, y, z) \rightharpoonup_{\mathsf{and}} (a, b, c)}{s, x := y \text{ and } z \rightharpoonup s \uplus (x, a)(y, b)(z, c), x := y \text{ and } z}$$

Propagate knowledge of absence

ſ	s(x)	s(y)	<i>s</i> (<i>z</i>)	а	b	с
Ĩ	\perp	?/⊥	?/⊥	\bot	\perp	\perp
	?/⊥	\perp	?/⊥	\perp	\perp	\perp
	?/⊥	?/⊥	Ţ	\perp	\perp	\perp

structive semantic model Quartz and synchronous guarded actions Formal properties Signal and equations over signals Conclusion From synchrony to asynchrony

Small-step semantics of Quartz (scheduling)

 $\frac{s' = (s(x) \in \mathcal{D})?s, s \uplus (x, v) \quad w = (x \in \mathcal{M})?s'(x), v}{s, \text{var } x: \text{ done } (p) \text{ default } v \rightharpoonup s', \text{ done } (\text{var } x: p \text{ default } w)}$

 $\frac{s, p \rightharpoonup s', p'}{s, p \mid q \rightharpoonup s', p' \mid q} \qquad \frac{s, p \rightharpoonup s', p'}{s, q \mid p \rightharpoonup s', q \mid p'}$

s, done
$$p \mid \text{done } q \rightharpoonup s$$
, done $(p \mid q)$

A constructive semantic model Formal properties Conclusion From synchrony to asynchrony

Equations over signals (function)

$s(x,y,z) ightarrow_{and} (a,b,c)$	
$\overline{s, x := y}$ and $z ightarrow \overline{s} \uplus (x, a)(y, b), (z, c), x := y$ and	id 2

Propagate knowledge of presence

s(x)	s(y)	s(z)	а	b	С
Т	?/⊤	?/⊤	Т	Т	Т
?/⊤	Т	?/⊤	Т	Т	\top
?/⊤	?/ op	Т	Т	Т	Т

A constructive semantic model Formal properties Signal and equations over signals

Equations over signals (function)

$$\frac{s(x, y, z) \rightharpoonup_{\mathsf{and}} (a, b, c)}{s, x := y \text{ and } z \rightharpoonup s \uplus (x, a)(y, b), (z, c), x := y \text{ and } z}$$

Progress by computations

s((x)	s(y)	s(z)	а	b	С
?	$/\top$	а	?/⊤	Т	а	Τ
?	$/\top$?/⊤	а	T	Т	а
?	$/\top$	b	а	$a \wedge b$	Ь	а

Notice that $\rightharpoonup_{\mathsf{and}}$ is monotonic and increasing

* $a, b \in \mathbb{B}$

	< 🗗 >	<	◆≣→	æ	୬୯୯
					17

$$s(x, y, z) \rightharpoonup_{\mathsf{default}} (a, b, c)$$

Progress by the logic of absence, presence and by computations

<i>s</i> (x)	s(y)	s(z)	а	b	С
-	L	?/⊥	?/⊥	\bot	\bot	\perp
?/	′⊥	\perp	\perp	\perp	\perp	\perp
	?	Т	<i>X</i> *	Т	Т	X
	?	X	Т	Т	X	Т
?/	Τ	а	Х	а	а	X
?/	Τ	\perp	а	а	\perp	а

* **x** is the "don't care", i.e., any status except error

Equations over signals (sampling)

 $s(x, y, z) \rightharpoonup_{when} (a, b, c)$

Progress by the logic of absence, presence and by computations

С
\perp
\perp
\perp
0
a $\sqcup 1$
1

 $^{\ast}\,$ Rules for absence/presence encode the clock calculus

A constructive se

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 …のへで

18

model Quarts and synchronous guarder perties Signal and equations over signal clusion From synchrony to asynchrony

Equations over signals (delay)

$$\frac{s(x,y), a \rightharpoonup_{\$init} (b, c, d)}{s, x := y \$init a \rightharpoonup s \uplus (x, b)(y, c), x := y \$init d}$$

Progress by the logic of absence, presence and by computations

s(x)	s(y)	а	b	С	d
	?/⊥	а	\perp	\perp	а
] ?/⊥	\perp	а	\perp	\perp	а
T	?/⊤	а	а	Т	а
?/⊤	Т	а	а	Т	а
?/⊥	b	а	а	b	b
а	b	а	а	Ь	Ь

... Wait!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

el Quartz and synchronous guarded act es Signal and equations over signals

Equations over signals (delay)

A constructive se

.... Where you listening ?

$$\frac{s(x, y), a \rightharpoonup_{\$init} (b, c, d)}{s, x := y \$init a \rightharpoonup s \uplus (x, b)(y, c), x := y \$init d}$$

lt's not quite

s(x)	s(y)	а	b	С	d
?/⊥	b	a⊈	а	b	b
а	Ь	a 🖾	а	Ь	b

but more exactly

s(x)	s(y)	a_{t-1}	a _t	bс	a_{t-1}	d
[?/⊥	b	а	?/ op	$\sqsubseteq a b$	а	b
а	Ь	а	?/⊤	$\sqsubseteq a b$	а	b

< □ > < @ > < 클 > < 클 > 클 - 의역 @ 21

Model FIFO buffers ...

$$w ::= \epsilon$$
 (empty)
| $a.w$ (read)
| $w.a$ (write)

... to define the interface of a process p with the network P

$$P, Q ::= \langle s, p \rangle \mid P \parallel Q$$
 (network)

... and get something like that: progress with \rightharpoonup and writeout with \neg

$$E, \langle s_0, p \rangle \rightharpoonup^* F, \langle s, q \rangle \rightarrow^* G, \langle s_0, r \rangle$$
 (big step)

 $s_0 = \{(x, ?) \mid x \in V(p)\}$

A constructive semantic model Formal properties Conclusion

Quartz and synchronous guarded actions Signal and equations over signals From synchrony to asynchrony

Equations over signals (a run)

$$c := o \sinh 1 | o := n \operatorname{default} c - 1 | n \stackrel{\times}{=} \operatorname{when} c = 0$$

$$\begin{array}{c} (c,?)(n,?)(o,\top_{\bullet})(x,?)(y,?) \xrightarrow{}_{\$init} (c,1_{\bullet})(n,?)(o,\top)(x,?)(y,?) \\ \xrightarrow{}_{sub} (c,1)(n,?)(o,\top)(x,0_{\bullet})(y,?) \\ \xrightarrow{}_{eq} (c,1)(n,?)(o,\top)(x,0)(y,ff_{\bullet}) \\ \xrightarrow{}_{\triangleq} (c,1)(n,\bot_{\bullet})(o,\top)(x,0)(y,ff) \\ \xrightarrow{}_{default} (c,1)(n,\bot)(o,0_{\bullet})(x,0)(y,ff) \\ \xrightarrow{}_{\$init} (c,1)(n,\bot)(o,0)(x,0)(y,ff) \end{array}$$

 $c := o \operatorname{sinit} 0_{\bullet} | \ldots$

<ロ> <合>	▲国社 ▲国社 国 めんの
	22
A constructive semantic model Formal properties Conclusion Form synchrony to asynchrony to asynchron	status ed actions als
Interface semantics $E, P \rightarrow F, Q$ (trigger and	d read)
$rac{s, p ightarrow t, q}{E, \langle s, p angle ightarrow E, \langle t, q angle}$	(embedding rule)
$\frac{x \in \mathcal{T}(p)}{E, \langle s \uplus (x,?), p \rangle \! \rightharpoonup \! E, \langle s \uplus (x, \top), p \rangle}$	(trigger execution)
$\frac{x \in l(p)}{E \uplus (x, a.w), \langle s \uplus (x, \top), p \rangle \rightharpoonup E \uplus (x, w), \langle s \uplus (x, a), p \rangle}$	(read inputs)

(write output)

(filter locals, absence)

 $\frac{x \in O(p) \land a \in \mathbb{B}}{E \uplus (x, w), \langle s \uplus (x, a), p \rangle \rightarrow E \uplus (x, w.a), \langle s, p \rangle}$

 $\frac{x \notin O(p) \lor a = \bot}{E, \langle s \uplus (x, a), p \rangle \rightharpoondown E, \langle s \uplus (x, ?), p \rangle}$

Interface semantics of Quartz is much simpler:

(read)	$E \uplus (x, a.w), \langle s, p \rangle \neg E \uplus (x, w), \langle s_x \uplus (x, a), p \rangle$	$x \in I(p)$
(write)	$E \uplus (x, w), \langle s \uplus (x, a), p \rangle \neg E \uplus (x, w.a), \langle s_x \uplus (x, ?), p \rangle$	$x \in O(p)$
(mask)	$E, \langle s, p \rangle \rightarrow E, \langle s_x \uplus (x,?), p \rangle$	$x \in L(p)$
(restart)	$E, \langle s, done \ p \rangle \neg E, \langle s, p \rangle$	

 $\frac{E, P \rightarrow F, Q}{E, P \rightarrow E, Q}$

 $\frac{E, \langle s, p \rangle \rightarrow^* F, \langle s', q \rangle}{E, \langle s, p \rangle \rightarrow F, \langle s', q \rangle}$

 $\frac{E, P \to E', P'}{E, P \parallel Q \to E', P' \parallel Q} \quad \frac{E, P \to E', P'}{E, P \parallel Q \to E', P' \parallel Q}$

 $c := o \operatorname{sinit} 42 | \ldots$

(schedule)

(step)

(flush)

Synchronous constructivity Asynchronous constructivity Stuttering robustness

Formal properties

Formal properties

Definition (Synchronous constructivity)

A module *p* is synchronous constructive iff. for all $s_0 = \{(x, a) | x \in I(p), a \in \mathbb{B}\} \cup \{(y, ?) | y \in V(p) \setminus I(p)\}$ we have $s_0, p \rightarrow^* s, q$ and *s* is defined on \mathbb{B} (i.e. $s = Ifp \rightarrow_p(s_0)$)

Proposition

If p is synchronously constructive then p is reactive*

* a.k.a. synchronously deterministic

(□) (部) (E) (E) E) の(() 29

Introduction A constructive semantic model Formal properties Conclusion	Synchronous constructivity Asynchronous constructivity Stuttering robustness
No reaction to absence	

A process should stutter when its triggers are inhibited

$$\frac{x \in T(p)}{E, \langle s \uplus (x, ?), p \rangle \rightharpoonup E, \langle s \uplus (x, \bot), p \rangle}$$

Definition (Stuttering)

A process p is robust to stuttering iff. for $s = \{(x, \bot) | x \in T(p)\} \cup \{(x, ?) | x \in V(p) \setminus V(p)\}$ we have $\langle s, p \rangle \rightharpoonup^* \langle s', p \rangle$ and $s' = \{(x, \bot) | x \in V(p)\}$

Note: this captures (weakly) endochronous systems

Definition (Asynchronous constructivity)

A process *p* is asynchronously constructive iff. for any environment *E* of non-empty streams defined on *V*(*p*) and $s_0 = \{(x,?) \mid x \in V(p)\}$ we have $E, \langle s_0, p \rangle \rightharpoonup^* F, \langle s, q \rangle$ and *s* is defined on \mathbb{B}^{\perp} (i.e. $(F, s) = lfp \rightharpoonup_p(E, s_0)$).

Proposition

If p is asynchronously constructive then p is asynchronously deterministic

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへぐ

A constructive semantic mod Formal properti Conclusio

Discussions and future works

- An executable operational semantics of Signal and Quartz
 - simulates scheduling of data-flow equations
 - takes into account their interface with streams
- A common constructive model for Quartz and Signal
- \Rightarrow Extend constructivity analysis to polychronous (concurrent) systems
- \Rightarrow A constructivity framework for abstract interpretation

A constructive semantic model Formal properties Conclusion

Oversampling and clock domains

Define the sum $\sum_{i=1}^{n}$ from the counter (triggered by o),

$$sigma(n,s) \triangleq (counter(n,o)) (i := (i \text{sinit } 0) + o | s := i \text{ when } (o = 1)) / i) / o$$

Sigma is triggered by *o*, and, equivalently

 $sigma'(n,s) \triangleq (counter(n,o) \parallel (i := (i \text{sinit 0}) + o \mid s := i \text{ when } (o = 1)) / i) / o$

< □ ▷ < @ ▷ < 분 ▷ < 분 ▷ 분 - 위역 () 33