
Mapping and scheduling data-flow
applications using the KRG model

Jean-Vivien Millo, Robert de Simone

EPI AOSTE, INRIA Sophia-Antipolis

Good afternoon everybody!

From Prof. Ramesh

Outline

• Introduction

• The KRG model

• Front end required!

• Case study: All to all propagation algorithm

General view

• Mapping and Scheduling data-flow application

– AAA: Allocation Application / Architecture

– Plate-form based design

– Y-Chart approach [1]

• using the K-Periodically Routed Graph (KRG)

– An incremental approach

– Fine grain parallelism

General view

Plate-form Application
mapping

Plate-form
aware

application Scheduling
Routing !

General view

• Application

– Data-flow

– High parallelism

• Plate-form

– Heterogeneous multi-core

– On-chip network

Plate-form Application

mapping

Plate-form
aware

application Scheduling
Routing!

General view

• Mapping
– Allocating tasks on cores
– Allocating com. on network!

• Scheduling
– Temporal allocation of task’s occurrences

• Routing
– Temporal allocation of com. Occurrences

• Not necessary in sequence

Plate-form Application

mapping

Plate-form
aware

application Scheduling
Routing

An incremental approach

• At each step:

– Analyses are possible

– Back tracking based on analyses results

Plate-form

Application
Plate-form

aware
application

Intermediary
representat.

Intermediary
representat.

Intermediary
representat.

Intermediary
representat.

On an example

Bus

CPU

DSP

Sensor Activator

Mapping

10

Sensor

Activator

DSP CPU

Bus

CPU

DSP

Sensor Activator

Mapping tasks Bus

CPU

DSP

Sensor Activator

0

1

0

1

(u)w (u)w

Sensor

Activator

DSP CPU

Scheduling Bus

CPU

DSP

Sensor Activator

0

1

0

1

Sensor

Activator

DSP CPU

(10)w (10)w

Mapping communications

13

Sensor

CPU

Activator

DSP

0

1

0

1

0

1

0

1

(v)w (v)w

Bus

Bus

CPU

DSP

Sensor Activator

(10)w (10)w

Routing Bus

CPU

DSP

Sensor Activator

14

Sensor

CPU

Activator

DSP

0

1

0

1

0

1

0

1

Bus

(10)w (10)w (10)w (10)w

Outline

• Introduction

• The KRG model

• Front end required!

• Case study: All to all propagation algorithm

The KRG model
• The transition consumes and produces on

 every port

• The select 1 input/2 outputs

• The merge 1 input/2 outputs, blocking

• The place 1 input/1 output

• The token A piece of data

• The arc Relating places and nodes

0

1

0

1

(10)w

(10)w

The KRG model

• The routing patterns:
– Data independent

– Decided at compile time

– K-Periodic pattern

• About the KRG model:
– Many properties are decidable on the model

• Safety, (pseudo)-liveness.

• Timing analysis

0

1

0

1

(10)w (10)w

Abstraction in SDF

• Any KRG can be abstracted into an
Synchronous Data Flow(SDF) graph.

– Balanceness can be checked

– Let u  {0,1}* such that |u|=p and |u|1=k

0

1

0

1

(u)w

(u)w

p

p
p-k

p-k
k

k

Abstraction in SDF

19

Sensor

CPU

Activator

DSP Bus

Bus

CPU

DSP

Sensor Activator

2 2 2 2

Normal form

• Every KRG has a normal form that preserves
its flow and behavior

• Many transformation rules are defined

– Equivalence between original application and
plate-form aware application.

Synchronous KRG

• Let us assume a global clock

Latency  0

0

1

0

1

(u)w

(u)w Latency = 0 }

Latency  0

After expansion

0  Latency  1

Latency = 0

No cycle with 0 latency

Scheduling

(100)*

(010)*

(001)*

(001)*

(001)*

Bus

CPU

DSP

Sensor Activator

Scheduling Bus

CPU

DSP

Sensor Activator

Sensor

CPU

Activator

DSP

0

1

0

1

0

1

0

1

Bus

(10)w (10)w (10)w (10)w

(1000000)*

(0001000)*

(0100000)*

(0010000)*

(0000100)*

Routing Bus

CPU

DSP

Sensor Activator

Sensor

CPU

Activator

DSP

0

1

0

1

0

1

0

1

Bus

(10)w (10)w (10)w (10)w

(0010010)*

Incremental mapping

• Mapping constraints can be modeled as
additional pieces of KRG

CPU

0

1

0

1

(u)w (u)w

Task 1

Task 2

Latency=0

Latency=0

Latency=1 Task allocation

CPU DSP

0

1

0

1

(v)w (v)w

Bus

Latency=1

Communication
 allocation

Memory allocation?

Outline

• Introduction

• The KRG model

• Front end required!

• Case study: All to all propagation algorithm

Front end required

Application
(KRG)

Plate-form
aware

application

Mapping

Routing

Scheduling

Front end
Language

Front end

• Affine bounded nested loop

– Stream it

– Polyhedral process network

– Compaan

• KRG

– goes further with non-linear optimization

– routes communications

Front end

• CCSL
– Clock Constraint Specification Language

• Specification of the system
– Introduction of the plate-form constraints

– Capture the resulting switching conditions and
schedules

• KRG and associated methodology would be the
solving engine.

Outline

• Introduction

• The KRG model

• Front end required!

• Case study: All to all propagation algorithm

– Routing communications in a NoC

Refining cellular automata with
routing constraints

Jean-Vivien Millo, Robert de Simone

INRIA Sophia-Antipolis

Why

• In a CA, communications are free

• In the implementation of a CA on a multicore
architecture,

– communication are not free

• Game of life with neighborhood 2 and a grid
of size 10: 2400 messages are exchanged.

Today

• Motivating example

– Neighbor Broadcasting Algorithm

• How to perform routing:

– Extract the routing directives from behavioral
analysis of the algorithm

Cellular Automata

• Synchronous, infinite but periodic

• rectangular grid of dimension 2

• Manhattan distance: |xa-xb|+|ya-yb|

• Moore distance: MAX (|xa-xb|, |ya-yb|)

• Neighborhood Nn(c)=(c1/ ||c-c1||  n)

• The radius is n

CA + routing

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

Comp.
cell

• Refinement of the timeline:

Step 0 Step 1 Step 2 Step 3
m-steps m-steps m-steps

The router

• How to compute:

– The feeding rule?

– The propagation rule?

Neighbor Broadcasting Algorithm

• Propagate the current state to all our
neighbors up to a radius n.

– Using a predefined propagation pattern

– Using multicasting

• All the cells do the same simultaneously

Propagation pattern

NBA m-step by m-step

stage 1

stage 2

stage 3

stage 4

stage 5

stage 6

stage 7

stage 8

stage 9

stage 10

r

The router during the NBA

• The 4 propagations patterns

• Opposite sources do not interfere
– Opposite sources can be processed in parallel

– Here is the feeding rules

The propagation rule

C
O

P
Y

C
O

P
Y

C
O

P
Y

C
O

P
Y

North

South

East

West

North

South

East

West

Comp.
cell

X 0
1

110014014013012010

X 0
1

1140140130120100

X 0
1

110014014013012010

X 0
1

1140140130120100

0
1

101021031041015

X

0
1

1101021031019

X

0
1

101021031041015

X

0
1

1101021031019

X

Experimental results

• Simulation in System C

– of the NBA

• For a radius n

– Execution time is 2n (n+1)

– Buffer size is n

• Stencil application

Conclusion

• We have presented an extension of CA with
routing constraints

• We have illustrated our approach with the
NBA

• Possible future directions:

– Dimension > 2

– Asynchronous CA

– What if the CA is bigger than the NoC

Thank you

References

• [1] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, Kees A. Vissers: A Methodology to
Design Programmable Embedded Systems - The Y-Chart Approach. Embedded Processor
Design Challenges 2002: 18-37

http://www.informatik.uni-trier.de/~ley/pers/hd/d/Deprettere:Ed_F=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Deprettere:Ed_F=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Wolf:Pieter_van_der.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vissers:Kees_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vissers:Kees_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vissers:Kees_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vissers:Kees_A=.html
http://www.informatik.uni-trier.de/~ley/db/conf/samos/samos2002.html
http://www.informatik.uni-trier.de/~ley/db/conf/samos/samos2002.html

