a/)d
/‘OUZ_,
/ng

\

Mapping and scheduling data-flow
applications using the KRG model

Jean-Vivien Millo, Robert de Simone
EPI AOSTE, INRIA Sophia-Antipolis

Good afternoon everybody!

From Prof. Ramesh

Outline

Introduction

The KRG model

Front end required!

Case study: All to all propagation algorithm

General view

* Mapping and Scheduling data-flow application
— AAA: Allocation Application / Architecture
— Plate-form based design
— Y-Chart approach [1]

* using the K-Periodically Routed Graph (KRG)
— An incremental approach
— Fine grain parallelism

General view

mapping

Application Plate-form

Plate-form

. aware
Scheduling application
Routing !

General view

mappmg
Application Plate-form
— Data-flow

Plate-form
—_ H |g h pa a | | e | |S m Scheduling‘ ap;‘l’;’caart‘:on

* Application

Routing!

Plate-form
— Heterogeneous multi-core
— On-chip network

General view
Mapping
— Allocating tasks on cores

mappmg
Application Plate-form
— Allocating com. on network!
Plate-form
aware
SChedlf”"g application
Scheduling fouting

— Temporal allocation of task’s occurrences

Routing
— Temporal allocation of com. Occurrences

Not necessary in sequence

An incremental approach

Plate-form
. . Intermediary Intermediary Intermediary Intermediary
-»> -> -> -»>
Ap p I |Cat ion representat. representat. representat. representat. aware

application

Plate-form

* At each step:
— Analyses are possible
— Back tracking based on analyses results

On an example

?

) [555 —U — acieier
|
Bus

Activator

Activator

i . . . -
- — Mapping communications g

 I—

Sensor

0 (10 W
'

Activator

Routing

(10)®

(10)®

0~ (10) _‘
'

Activator

Outline

Introduction

The KRG model

Front end required!

Case study: All to all propagation algorithm

The KRG model

The transition consumes and produces on
every port
The select 1 input/2 outputs
(10)®
The merge 1 input/2 outputs, blocking
(10)®
The place @ 1input/1output
The token A piece of data
The arc Relating places and nodes

The KRG model

* The routing patterns:
— Data independent (10)® (10)®
— Decided at compile time
— K-Periodic pattern

e About the KRG model:

— Many properties are decidable on the model
» Safety, (pseudo)-liveness.
* Timing analysis

Abstraction in SDF

* Any KRG can be abstracted into an
Synchronous Data Flow(SDF) graph.

— Balanceness can be checked
— Let u € {0,1} such that |u|=p and |u]|,=k

(u)®

(u)®

Activator

Normal form

* Every KRG has a normal form that preserves
its flow and behavior

 Many transformation rules are defined

— Equivalence between original application and
plate-form aware application.

Synchronous KRG

e Let us assume a global clock

After expansion

<D Latency = 0 0 > Latency > 1

Latency =0 Latency =0

(u)® } Latency = 0

(u)®

Scheduling

(001)"

[@

(100)"

(010)"

(001)"

_
o T
1
——

Sensor

(0001000)"

S

i (IOOOOOO)*
I—»(D N O[I—‘

. (o1ooq/\)

Activator

(0010000)"

Bus

2 (10)® (10)®

Activator

Incremental mapping

 Mapping constraints can be modeled as
additional pieces of KRG

Latency=0 CPU

Task allocation

Memory allocation?

Communication
allocation

Outline

Introduction

The KRG model

Front end required!

Case study: All to all propagation algorithm

Front end required

Front end
Language

R Mapping
Application Routing

(KRG) Scheduling

Plate-form

aware
application

Front end

e Affine bounded nested loop
— Stream it
— Polyhedral process network
— Compaan

* KRG

— goes further with non-linear optimization
— routes communications

Front end

e CCSL
— Clock Constraint Specification Language

e Specification of the system
— Introduction of the plate-form constraints

— Capture the resulting switching conditions and
schedules

KRG and associated methodology would be the
solving engine.

Outline

Introduction

The KRG model

Front end required!

Case study: All to all propagation algorithm

— Routing communications in @ NoC

Refining cellular automata with
routing constraints

Jean-Vivien Millo, Robert de Simone
INRIA Sophia-Antipolis

Why
* |n a CA, communications are free

* |[n the implementation of a CA on a multicore
architecture,
— communication are not free

* Game of life with neighborhood 2 and a grid
of size 10: 2400 messages are exchanged.

Today

* Motivating example
— Neighbor Broadcasting Algorithm

* How to perform routing:

— Extract the routing directives from behavioral
analysis of the algorithm

Cellular Automata

Synchronous, infinite but periodic
rectangular grid of dimension 2

Manhattan distance: |x,-x, |+]Y,-Y, |
Moore distance: MAX (|x,-X, |, |Y.-Yp)
Neighborhood N"(c)=(c,/ | |c-c,| |, < n)
The radius is n

QO

A A

<o PTY <h <A VI
> > u >
I comp come I

e Refinement of the timeline:

Step O Step 1 Step 2 Step 3
L—steps

I L—steps I H—steps I I

The router

Algorithm 1 describes the generic behavior of a router
while true do
in_ports = feeding rule()
for all in_port € in_ports do
data = in_port.read ()

destinations = propagation_rule(data)
for all out_port € destinations do
out _port.write(data)
end for
end for
patise

end while

How to compute:
— The feeding rule?
— The propagation rule?

Neighbor Broadcasting Algorithm

* Propagate the current state to all our
neighbors up to a radius n.

— Using a predefined propagation pattern
— Using multicasting

e All the cells do the same simultaneously

Propagation pattern

* 40 ¢ o o

* ¢ ¢ o o

¢ o o

* ¢+

* o o
SR TR S
* O—o—o
— e & —e
> oo o
>~ & oo

NBA u—step by u—step

stage 5 @_
stage 9

stage 3

¢
stage 2) LS
stage 6

r/

The router during the NBA

* The 4 propagations patterns

pRER

* Opposite sources do not interfere
— Opposite sources can be processed in parallel
— Here is the feeding rules

West

South

East

The propagation rule

(1= = @— South
> 8 : 1
o 0)
> 1140140110120100 =
(1= > E
>==€3 . p o ast
= =X
119014014013012010
M 11010210°10Y & o
o So p
3 O =X 1
= 14014013012 =X
1190101%01%0100 =, " . . s
s 1010°100% g gt
(@)
@) \l 3(1
o b ==X

Comp.
cell

DOEIEN IR EN S

e Simulation in System C
— of the NBA

e For aradius n
— Execution time is 2xnx (n+1)
— Buffer size is n

* Stencil application

Conclusion

 We have presented an extension of CA with
routing constraints

 We have illustrated our approach with the
NBA
* Possible future directions:
— Dimension > 2
— Asynchronous CA
— What if the CA is bigger than the NoC

Thank you

References

 [1] Bart Kienhuis, : A Methodology to
Design Programmable Embedded Systems The Y- Chart Approach.
: 18-37

http://www.informatik.uni-trier.de/~ley/pers/hd/d/Deprettere:Ed_F=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Deprettere:Ed_F=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Wolf:Pieter_van_der.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vissers:Kees_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vissers:Kees_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vissers:Kees_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Vissers:Kees_A=.html
http://www.informatik.uni-trier.de/~ley/db/conf/samos/samos2002.html
http://www.informatik.uni-trier.de/~ley/db/conf/samos/samos2002.html

