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Good afternoon everybody! 

From Prof. Ramesh 
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• Case study: All to all propagation algorithm 



General view 

• Mapping and Scheduling data-flow application 

– AAA: Allocation Application / Architecture 

– Plate-form based design 

– Y-Chart approach [1] 

• using the K-Periodically Routed Graph (KRG) 

– An incremental approach 

– Fine grain parallelism 
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General view 

• Application 

– Data-flow 

– High parallelism 

 

• Plate-form 

– Heterogeneous multi-core 

– On-chip network 
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General view 

• Mapping 
– Allocating tasks on cores 
– Allocating com. on network! 

 

• Scheduling 
– Temporal allocation of task’s occurrences 

 

• Routing 
– Temporal allocation of com. Occurrences 

 

• Not necessary in sequence 
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An incremental approach 

• At each step: 

– Analyses are possible 

– Back tracking based on analyses results 
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Mapping communications 
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Routing Bus 
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The KRG model 
• The transition      consumes and produces on 

          every port 

• The select      1 input/2 outputs 

 

• The merge      1 input/2 outputs, blocking 

 

• The place      1 input/1 output 

• The token      A piece of data  

• The arc       Relating places and nodes 
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The KRG model 

• The routing patterns: 
– Data independent 

– Decided at compile time 

– K-Periodic pattern 

 

• About the KRG model: 
– Many properties are decidable on the model 

• Safety, (pseudo)-liveness. 

• Timing analysis 
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Abstraction in SDF 

• Any KRG can be abstracted into an 
Synchronous Data Flow(SDF) graph. 

– Balanceness can be checked 

– Let u  {0,1}* such that |u|=p  and |u|1=k 
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Abstraction in SDF 
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Normal form 

• Every KRG has a normal form that preserves 
its flow and behavior 

 

• Many transformation rules are defined 

– Equivalence between original application and 
plate-form aware application. 



Synchronous KRG 

• Let us assume a global clock 

Latency  0 
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Incremental mapping 

• Mapping constraints can be modeled as 
additional pieces of KRG 
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Front end required 
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Front end 

• Affine bounded nested loop 

– Stream it 

– Polyhedral process network 

– Compaan 

 

• KRG 

– goes further with non-linear optimization 

– routes communications 



Front end 

• CCSL 
– Clock Constraint Specification Language 

 

• Specification of the system 
– Introduction of the plate-form constraints 

– Capture the resulting switching conditions and 
schedules 

 

• KRG and associated methodology would be the 
solving engine. 
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• Introduction 

 

• The KRG model 

 

• Front end required! 

 

• Case study: All to all propagation algorithm 

– Routing communications in a NoC 



Refining cellular automata with 
routing constraints 

Jean-Vivien Millo, Robert de Simone 

INRIA Sophia-Antipolis 



Why 

• In a CA, communications are free 
 

• In the implementation of a CA on a multicore 
architecture,  

– communication are not free 

 

• Game of life with neighborhood 2 and a grid 
of size 10: 2400 messages are exchanged. 



Today 

• Motivating example 

– Neighbor Broadcasting Algorithm 

 

 

• How to perform routing: 

– Extract the routing directives from behavioral 
analysis of the algorithm 

 



Cellular Automata 

• Synchronous, infinite but periodic 

• rectangular grid of dimension 2 

 

• Manhattan distance: |xa-xb|+|ya-yb| 

• Moore distance: MAX (|xa-xb|, |ya-yb|) 

• Neighborhood Nn(c)=(c1/ ||c-c1||  n) 

• The radius is n 



CA + routing 
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• Refinement of the timeline: 
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m-steps m-steps m-steps 



The router 

• How to compute: 

– The feeding rule?  

– The propagation rule? 



Neighbor Broadcasting Algorithm 

• Propagate the current state to all our 
neighbors up to a radius n. 

– Using a predefined propagation pattern 

– Using multicasting 

 

• All the cells do the same simultaneously 



Propagation pattern 



NBA m-step by m-step 
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The router during the NBA 

• The 4 propagations patterns 

 

 

 

 

 

• Opposite sources do not interfere 
– Opposite sources can be processed in parallel 

– Here is the feeding rules 



The propagation rule 
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Experimental results 

• Simulation in System C 

– of the NBA 

 

• For a radius n 

– Execution time is  2n (n+1) 

– Buffer size is n 

 

• Stencil application 



Conclusion 

• We have presented an extension of CA with 
routing constraints 

• We have illustrated our approach with the 
NBA 

• Possible future directions: 

– Dimension > 2 

– Asynchronous CA 

– What if the CA is bigger than the NoC 



Thank you 
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