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Mapping and scheduling data-flow
applications using the KRG model
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Good afternoon everybody!

From Prof. Ramesh
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General view

* Mapping and Scheduling data-flow application
— AAA: Allocation Application / Architecture
— Plate-form based design
— Y-Chart approach [1]

* using the K-Periodically Routed Graph (KRG)
— An incremental approach
— Fine grain parallelism
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General view

mappmg
Application Plate-form
— Data-flow

Plate-form
—_ H |g h pa a | | e | |S m Scheduling‘ ap;‘l’;’caart‘:on

* Application

Routing!

Plate-form
— Heterogeneous multi-core
— On-chip network



General view
Mapping
— Allocating tasks on cores

mappmg
Application Plate-form
— Allocating com. on network!
Plate-form
aware
SChedlf”"g application
Scheduling fouting

— Temporal allocation of task’s occurrences

Routing
— Temporal allocation of com. Occurrences

Not necessary in sequence



An incremental approach

Plate-form
. . Intermediary Intermediary Intermediary Intermediary
-»> -> -> -»>
Ap p I |Cat ion representat. representat. representat. representat. aware

application

Plate-form

* At each step:
— Analyses are possible
— Back tracking based on analyses results



On an example
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The KRG model

The transition consumes and produces on
every port
The select 1 input/2 outputs
(10)®
The merge 1 input/2 outputs, blocking
(10)®
The place @ 1input/1output
The token A piece of data
The arc Relating places and nodes




The KRG model

* The routing patterns:
— Data independent (10)® (10)®
— Decided at compile time
— K-Periodic pattern

e About the KRG model:

— Many properties are decidable on the model
» Safety, (pseudo)-liveness.
* Timing analysis



Abstraction in SDF

* Any KRG can be abstracted into an
Synchronous Data Flow(SDF) graph.

— Balanceness can be checked
— Let u € {0,1} such that |u|=p and |u]|,=k
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Normal form

* Every KRG has a normal form that preserves
its flow and behavior

 Many transformation rules are defined

— Equivalence between original application and
plate-form aware application.



Synchronous KRG

e Let us assume a global clock

After expansion

<D Latency = 0 0 > Latency > 1

Latency =0 Latency =0

(u)® } Latency = 0

(u)®
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Incremental mapping

 Mapping constraints can be modeled as
additional pieces of KRG

Latency=0 CPU

Task allocation

Memory allocation?

Communication
allocation
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Front end required

Front end
Language

R Mapping
Application Routing

(KRG) Scheduling

Plate-form

aware
application



Front end

e Affine bounded nested loop
— Stream it
— Polyhedral process network
— Compaan

* KRG

— goes further with non-linear optimization
— routes communications



Front end

e CCSL
— Clock Constraint Specification Language

e Specification of the system
— Introduction of the plate-form constraints

— Capture the resulting switching conditions and
schedules

KRG and associated methodology would be the
solving engine.
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— Routing communications in @ NoC



Refining cellular automata with
routing constraints

Jean-Vivien Millo, Robert de Simone
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Why
* |n a CA, communications are free

* |[n the implementation of a CA on a multicore
architecture,
— communication are not free

* Game of life with neighborhood 2 and a grid
of size 10: 2400 messages are exchanged.



Today

* Motivating example
— Neighbor Broadcasting Algorithm

* How to perform routing:

— Extract the routing directives from behavioral
analysis of the algorithm



Cellular Automata

Synchronous, infinite but periodic
rectangular grid of dimension 2

Manhattan distance: |x,-x, |+]Y,-Y, |
Moore distance: MAX (|x,-X, |, |Y.-Yp )
Neighborhood N"(c)=(c,/ | |c-c,| |, < n)
The radius is n

QO
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e Refinement of the timeline:

Step O Step 1 Step 2 Step 3
L—steps

I L—steps I H—steps I I



The router

Algorithm 1 describes the generic behavior of a router
while true do
in_ports = feeding rule()
for all in_port € in_ports do
data = in_port.read ()

destinations = propagation_rule(data)
for all out_port € destinations do
out _port.write(data)
end for
end for
patise

end while

How to compute:
— The feeding rule?
— The propagation rule?



Neighbor Broadcasting Algorithm

* Propagate the current state to all our
neighbors up to a radius n.

— Using a predefined propagation pattern
— Using multicasting

e All the cells do the same simultaneously



Propagation pattern
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The router during the NBA

* The 4 propagations patterns

pRER

* Opposite sources do not interfere
— Opposite sources can be processed in parallel
— Here is the feeding rules
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The propagation rule
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DOEIEN IR EN S

e Simulation in System C
— of the NBA

e For aradius n
— Execution time is 2xnx (n+1)
— Buffer size is n

* Stencil application



Conclusion

 We have presented an extension of CA with
routing constraints

 We have illustrated our approach with the
NBA
* Possible future directions:
— Dimension > 2
— Asynchronous CA
— What if the CA is bigger than the NoC



Thank you
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