
W-SEPT ANR project (W-7):
WCET and synchronous program

Claire Maiza, Pascal Raymond

Synchron 2012



W-7: back to semantics

d
is

tr
ib

u
ti

on
of

ex
ec

u
ti

on
ti

m
es

Exec-timeLB BCET WCET UB

Analysis-guaranteed timing bounds

Overest.

WCET and semantics

semantics influence the execution path

⇒ ”feasible” worst-case path

Claire Maiza W-7, WCET and SP Synchron 2012 2 / 18



Structure du projet

W-SEPT Partners:

IRIT Toulouse

Inria Rennes

Continental Toulouse

Verimag Grenoble
(coordinator)

Claire Maiza W-7, WCET and SP Synchron 2012 3 / 18



Compilation of Synchronous Programs

compiler
hierarchical, concurrent design

mono-bloc code

ΦI

M

O

I O

A basic compiler produces an ”object-like” code:

A (remanent) static memory (no DA).

A step method: purely sequential code (static scheduling)
mainly a sequence of assignment + conditional,
maybe some loops, but statically bounded (e.g. arrays iter/fold)

Remark: providing such a compiler makes the source language a de
facto synchronous language (e.g. c-code generators for
Simulink/Stateflow)

Claire Maiza W-7, WCET and SP Synchron 2012 4 / 18



Single Loop Implementation

Basic mono-bloc

Synchronous compilers produce the application software (the
”object”). Implementation depends on a particular
middleware/hardware

Basically, a synchronous code can run ”bare metal” (some drivers
for input/output, but no complex OS like dynamic scheduler)

e.g. a simple periodic implementation (period comes form a
specialist of the domain):

var I, O, M

M := M0

each period do

read(I)

O, M = step(I, M)

write(O)

end

Claire Maiza W-7, WCET and SP Synchron 2012 5 / 18



Real time?

Computes an upper bound of the WCET of the step method (+
necessary I/O latency)

check that bound < period

If yes: the system does not miss any change from the
environment,
the synchronous hypothesis is valid

Claire Maiza W-7, WCET and SP Synchron 2012 6 / 18



Synchronous programming vs Timing Analysis

Open questions

SP helps TA (at least) because:
I it guarantees that WCET exists
I it makes the analysis simpler : almost heap-free code, no aliasing

problems

Could it be better ?
I Discovering (non-trivial) infeasible path ?

Claire Maiza W-7, WCET and SP Synchron 2012 7 / 18



Infeasible path

A path is semantically impossible because the corresponding
conjunction of conditions is always false, for any execution of the
program.

⇒ How to make these conditions explicit ?
Find relations between them ?
Check satisfiability ?

I At binary level/C level: not obvious, require to build some
”propositional” representation of the program (e.g. SSA form)

I At the Lustre level: much more convenient, already in some ”clean
mathematical” form, moreover verification tools are available.

Claire Maiza W-7, WCET and SP Synchron 2012 8 / 18



From code branches to high level

The ”theorem”

For any branch in the binary code, there must exist a Boolean
expression in the source code whose value coincide to the predicate
”the branch is taken”.

Proof: otherwise the compiler is certainly buggy!
Problem: OK, but how to find these expressions?

requires a traceability between binary and C code, C code and
Lustre,

between Lustre and C: not a big problem, the compiler is under
control...

much mode tricky between C and binary (e.g. strongly depends
on optimisations)

The problem has to be investigated ...

... Let’s try with a simple case.

Claire Maiza W-7, WCET and SP Synchron 2012 9 / 18



From code branches to high level

The ”theorem”

For any branch in the binary code, there must exist a Boolean
expression in the source code whose value coincide to the predicate
”the branch is taken”.

Proof: otherwise the compiler is certainly buggy!
Problem: OK, but how to find these expressions?

requires a traceability between binary and C code, C code and
Lustre,

between Lustre and C: not a big problem, the compiler is under
control...

much mode tricky between C and binary (e.g. strongly depends
on optimisations)

The problem has to be investigated ...

... Let’s try with a simple case.

Claire Maiza W-7, WCET and SP Synchron 2012 9 / 18



From code branches to high level

The ”theorem”

For any branch in the binary code, there must exist a Boolean
expression in the source code whose value coincide to the predicate
”the branch is taken”.

Proof: otherwise the compiler is certainly buggy!
Problem: OK, but how to find these expressions?

requires a traceability between binary and C code, C code and
Lustre,

between Lustre and C: not a big problem, the compiler is under
control...

much mode tricky between C and binary (e.g. strongly depends
on optimisations)

The problem has to be investigated ...

... Let’s try with a simple case.

Claire Maiza W-7, WCET and SP Synchron 2012 9 / 18



From code branches to high level

The ”theorem”

For any branch in the binary code, there must exist a Boolean
expression in the source code whose value coincide to the predicate
”the branch is taken”.

Proof: otherwise the compiler is certainly buggy!
Problem: OK, but how to find these expressions?

requires a traceability between binary and C code, C code and
Lustre,

between Lustre and C: not a big problem, the compiler is under
control...

much mode tricky between C and binary (e.g. strongly depends
on optimisations)

The problem has to be investigated ...

... Let’s try with a simple case.

Claire Maiza W-7, WCET and SP Synchron 2012 9 / 18



A first attempt

Simple compilation scheme:

Lustre → C compiler adapted in such a way that all conditional
are of the form if (E) ..., where E coincide with a Lustre
expression.

C compiler is called in ”debug” mode (no optimization), in such
a way that all branching instruction is flagged by the
corresponding if (E) ...

A path in the binary code corresponds to a conjunction of literals
(e.g. E1 ∧ E2 ∧ ¬E3)

A decision tool is used to check if the conjunction (the path) is
satisfiable (feasible)

Claire Maiza W-7, WCET and SP Synchron 2012 10 / 18



Kinds of infeasibility

Structural/syntactical

based on identity

decision procedure unnecessary

could have been done at binary level
(maybe via SSA reconstruction)

A

A

Claire Maiza W-7, WCET and SP Synchron 2012 11 / 18



Kinds of infeasibility

Due to statical unsatisfiability

Examples:
I A = E, B = not E,
I A = x xor y, B = y and z,

C = x and t
I A = x + y > 10 , B = y <= 2,

C = 2*x < 15

requires decision procedure, e.g. Sat
(Modulo Theory) solver

could have been done at binary level
(maybe via SSA reconstruction)

A

B

C

Claire Maiza W-7, WCET and SP Synchron 2012 12 / 18



Kinds of infeasibility
Due to dynamic unreachability

A = if PA then not x else (PC and x);

B = PB and not y or PA and x or PC and

not x and y;

C = PC and not (y or x) or PC and y;

where PA, PB, PC are the values of A, B, C
computed at the previous cycle

(almost) impossible to discover at
C/binary level

strongly depends on the ”dynamic” nature
of the program

requires reachability (model-checking)
techniques

A

B

C

Claire Maiza W-7, WCET and SP Synchron 2012 13 / 18



Conclusion/Questions

Semantic ”facts”

simple ones can be expressed/discovered more easily at the
Lustre level ...

... as far as we are able to relate binary branches to Lustre
expressions !

complex (dynamic) ones are very hard (impossible) to handle at
binary level

Traceability

dramatically depends on the C compiler

how to deal with optimisation?

Claire Maiza W-7, WCET and SP Synchron 2012 14 / 18



Expressing facts in the WCET estimation

Complexity/Strategy

checking feasibility can be extremely expensive

require strategy/heuristics:
I limitation to pair-wise relations between conditions
I check satisfiability afterwards (to refute the WCET estimation), or

first (to simplify the WCET estimation problem)

simple pair-wise relations can be expressed in ILP (implications)

open problem: is it the best method ?

Claire Maiza W-7, WCET and SP Synchron 2012 15 / 18



Example

a

f()

b

g()

c

h()

...

OTAWA: WCET= 3000 cycles

MiniTool: worst-case path in Lustre
a and b and c

Lesar: path is not possible !

lp: xf + xg ≤ 1
xf + xh ≤ 1
xg + xh ≤ 1

lpsolve: WCET= 2500 cycles

Claire Maiza W-7, WCET and SP Synchron 2012 16 / 18



Draft of Proof-of-concept

Lustre compiler: variableC
⇒ ExprLustre

C compiler: testC=f(variableC)
⇒ @ instruction

OTAWA: @ instruction ⇒ CFG basic block
⇒ worst-case path

MiniTool : worst-case path
⇒ property = conjunction of ExprLustre

Lesar: property
⇒ feasible path?

Claire Maiza W-7, WCET and SP Synchron 2012 17 / 18



Open questions

Traceability from Lustre to C:
I from C to binary?
I from Scade to C?

No loop in our model:
I only loop bounds?
I need of loop-iteration identifier?

Compiler optimization:
I from not-optimized to fully optimized?
I from precise estimation of WCET to better code?

Claire Maiza W-7, WCET and SP Synchron 2012 18 / 18


