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Introduction

Application domain

I Embedded control system programming

I Block-diagram languages: StateCharts, Simulink,
Scade . . .

I More precisely synchronous languages: Esterel, Signal,
Lustre

Goal
I Generate efficient parallel code

I from explicit source annotations
I without changing

I the semantics of the program
I usual properties like static and bounded memory

I nor changing the existing sequential compilation.
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Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int )=(y:int)

var m :int;

let

y = x + m;

m = 0 fby y;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0 1 1 3 7 7 9 . . .

x 0 1 0 2 4 0 2 0 . . .

y 0 1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.
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Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1 2 3 4 . . .

big = period3() true false false true false . . .

xt = x when big 0 . . 3 . . . .

xf = x whenot big . 1 2 . 4 . . .

y = merge big xt xf 0 1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.
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The slow fast classical exemple

ys = 0 fby slow(1, ys);

ys 0 3.14 6.28 9.42 12.56 . . .

I slow: step integration with horizon of 1 second.

I fast: fast approximate with horizon of 1/3 second.

I We use the correct value when possible.

I And complement with the approximate one.
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The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);
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This is what happens, unfortunately:
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Synchronous register are synchronous
classSlow_fast {

Fast fast;

Slow slow;

Period3 period3;

float m;
float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;

m2 = 0.f;

}

floatstep () {
float y;

boolean big;

big = period3.step ();

if (big) {

y = m;

m = slow.step(1.f, y);
} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;
}

}

Reminder:
I y gets the value of the register m.

I During the same step, m is
updated for the next time.

This sequential compilation is:

I very efficient and simple

I traceable

I used and certified in Scade 6

But it prevents parallelization across
step boundaries.

Ocrep by A. Girault
The distributed imperative code is
optimized to bypass the synchronous
register.
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Decoupling slow fast with futures

node slow_fast () = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We had this:

7 / 19



Decoupling slow fast with futures

node slow_fast () = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We want this:

7 / 19



Decoupling slow fast with futures

node slow_fast () = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19



Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby (async slow(1, ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19



Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :future float

let

ys = (async 0) fby (async slow(1, ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19



Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :future float

let

ys = (async 0) fby (async slow(1, ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big !ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19



Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :future float

let

ys = (async 0) fby (async slow(1, !ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big !ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19



Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :future float

let

ys = (async 0) fby (async slow(1, !ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big !ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19



Futures

I Futures appears in MultiLisp by Halstead 1985.

I Are now in most functional languages and Java, C++, etc.

I Depending on language integration, it can be a mere library.

What is a future?
It is a value, which will hold the result of a closed term.
Intuitively, it is a promise of result that is bound to come.

To guarantee futures integrity in Heptagon:

I future t is an abstract type, with t being the result type.
I A future may only be created from:

I Constants: async 42
I Asynchronous function calls: async f(x,y)

I !x “get” the result held by the future x — it is blocking .
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Unchanged compilation: find the 4 differences
class Slow_fast {

Fast fast;

Slow slow;

Period3 period3;

float m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;

m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m;

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

class Slow_fast_a {

Fast fast;

Async <Slow > slow;

Period3 period3;

Future <float > m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = new Future (0.f);

m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m.get();

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}
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The async wrapper

The async wrapper

I runs asynchronously a node in a worker thread.
I behaves like a node:

I step
I At each input a future is returned.
I Inputs are fed to the wrapped node through a buffer.

I reset is done so as to allow data-parallelism.

Two exemples to illustrate

I the need of an input buffer to allow decoupling

I the use of reset to enable data-parallelism

10 / 19



The async wrapper

The async wrapper

I runs asynchronously a node in a worker thread.
I behaves like a node:

I step
I At each input a future is returned.
I Inputs are fed to the wrapped node through a buffer.

I reset is done so as to allow data-parallelism.

Two exemples to illustrate

I the need of an input buffer to allow decoupling

I the use of reset to enable data-parallelism

10 / 19



Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true false false true . . .

y0 1 2 3 4 5 6 7 . . .

y1 2 4 6 8 10 12 14 . . .

y 3 . . 12 . . 21 . . .
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Decoupling

Decoupling is dictated by:

I the size of the async input buffer

I the moment we get the result

Last exemple was partial decoupling because periodically we
required the result of the current instant.

Decoupling of n instants requires:

I an input buffer of size n

I a delay of n instant on the result

This is written:

Decoupling is always statically bounded
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Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4 5 6 7 . . .

c true false true false true false true . . .

m 0 1 0 3 0 5 0 . . .

y 1 3 3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1

2 3 4 5 6 7 . . .

c true

false true false true false true . . .

m 0

1 0 3 0 5 0 . . .

y

1 3 3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1

2 3 4 5 6 7 . . .

c true

false true false true false true . . .

m 0

1 0 3 0 5 0 . . .

y 1

3 3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1

2 3 4 5 6 7 . . .

c true

false true false true false true . . .

m 0

1 0 3 0 5 0 . . .

y 1

3 3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2

3 4 5 6 7 . . .

c true false

true false true false true . . .

m 0 1

0 3 0 5 0 . . .

y 1

3 3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2

3 4 5 6 7 . . .

c true false

true false true false true . . .

m 0 1

0 3 0 5 0 . . .

y 1 3

3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2

3 4 5 6 7 . . .

c true false

true false true false true . . .

m 0 1 3

3 0 5 0 . . .

y 1 3

3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3

4 5 6 7 . . .

c true false true

false true false true . . .

m 0 1 0

3 0 5 0 . . .

y 1 3

3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3

4 5 6 7 . . .

c true false true

false true false true . . .

m 0 1 0

3 0 5 0 . . .

y 1 3

3 7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3

4 5 6 7 . . .

c true false true

false true false true . . .

m 0 1 0

3 0 5 0 . . .

y 1 3 3

7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4

5 6 7 . . .

c true false true false

true false true . . .

m 0 1 0

3 0 5 0 . . .

y 1 3 3

7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4

5 6 7 . . .

c true false true false

true false true . . .

m 0 1 0 3

0 5 0 . . .

y 1 3 3

7 5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4

5 6 7 . . .

c true false true false

true false true . . .

m 0 1 0 3

0 5 0 . . .

y 1 3 3 7

5 3 7 . . .

13 / 19



Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4 5 6 7 . . .

c true false true false true false true . . .

m 0 1 0 3 0 5 0 . . .

y 1 3 3 7 5 3 7 . . .

13 / 19



Data-parallelism

c = period2 ();

y = sum(x) every c;

I Reset removes dependencies, enabling data-parallelism.

I Decoupling of at least 2 instants is required.

Thread number is static and explicit, here 2 are needed.
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Memory management

A future
I is a shared object with one producer, multiple consumers

I may be stored and used later on

I may not be used

I may not depend on previous ones

Without restrictions, the live-range of a future is undecidable and
a concurrent gc is needed, as the one of java.

Memory boundedness
Alive futures are bounded by the number of synchronous registers.
A slab allocator is possible with static allocation and reuse.

Scope restriction for node level memory management
Preventing futures to be returned or passed to an async call,
allows gc and slab to be synchronous and node local .
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Backends

Existing Java backend
Everything shown was generated with our Java backend.

I Futures are the ones of Java

I Static queues and worker threads

I But dynamic allocation of futures

Existing C backend, aiming embedded systems

I Hand tailored futures, queues and threads

I SLAB local to each node

I Futures have scope restrictions

WIP OpenMP Stream backend
I Data-flow parallel runtime

I No thread burden

I May be used to handle large number of async
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Code generation for embedded systems

async may be annotated with any needed static arguments.

Location annotations for distribution without scheduler:
I One thread per computing unit

I No surprise

I Usually not efficient

Priority annotations for EDF scheduling:

I Well known

I May be optimal

I Existing tools need to be adapted

Real time period annotations, etc.
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Conlusions

Semantics

Same semantics as the sequential program without async and !.

Expressivness

I Synchronous language: time programming

I Futures: decouple and make explicit beginning and end of
computations

I Together they allow for programing parallelism:
I decoupling, partial-decoupling,
I data-parallelism,
I fork-join, temporal fork-join,
I pipeline, etc.

Safety

I No deadlocks: futures in a pure language

I No dynamic memory allocation or thread creation
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Synchronization on inputs

c = period3 ();

ay0 = async <<0>> sum (1);

ay1 = async <<0>> sum (2);

y = !(ay0 when c) + !(ay1 when c);
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