
Programming Parallelism with Futures in Lustre

Albert Cohen and Léonard Gérard and Marc Pouzet

PARKAS Team
ENS Paris, France

Synchron 2012 (EMSOFT 2012)

1 / 19

Introduction

Application domain

I Embedded control system programming

I Block-diagram languages: StateCharts, Simulink,
Scade . . .

I More precisely synchronous languages: Esterel, Signal,
Lustre

Goal
I Generate efficient parallel code

I from explicit source annotations
I without changing

I the semantics of the program
I usual properties like static and bounded memory

I nor changing the existing sequential compilation.

2 / 19

Introduction

Application domain

I Embedded control system programming

I Block-diagram languages: StateCharts, Simulink,
Scade . . .

I More precisely synchronous languages: Esterel, Signal,
Lustre

Goal
I Generate efficient parallel code

I from explicit source annotations
I without changing

I the semantics of the program
I usual properties like static and bounded memory

I nor changing the existing sequential compilation.

2 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

y = x + m;

m = 0 fby y;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0 1 1 3 7 7 9 . . .

x 0 1 0 2 4 0 2 0 . . .

y 0 1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0 1 1 3 7 7 9 . . .

x 0 1 0 2 4 0 2 0 . . .

y 0 1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0

0 1 1 3 7 7 9 . . .

x

0 1 0 2 4 0 2 0 . . .

y

0 1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0

0 1 1 3 7 7 9 . . .

x 0

1 0 2 4 0 2 0 . . .

y

0 1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0

0 1 1 3 7 7 9 . . .

x 0

1 0 2 4 0 2 0 . . .

y 0

1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0

1 1 3 7 7 9 . . .

x 0

1 0 2 4 0 2 0 . . .

y 0

1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0

1 1 3 7 7 9 . . .

x 0 1

0 2 4 0 2 0 . . .

y 0

1 1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0

1 1 3 7 7 9 . . .

x 0 1

0 2 4 0 2 0 . . .

y 0 1

1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0 1

1 3 7 7 9 . . .

x 0 1 0

2 4 0 2 0 . . .

y 0 1

1 3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0 1

1 3 7 7 9 . . .

x 0 1 0

2 4 0 2 0 . . .

y 0 1 1

3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0 1 1

3 7 7 9 . . .

x 0 1 0 2

4 0 2 0 . . .

y 0 1 1

3 7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Heptagon in short:

I Functional synchronous

I Declarative data-flow

I Values are streams

I Types and operators are
lifted pointwise

I The synchronous register
fby

m 0 0 1 1

3 7 7 9 . . .

x 0 1 0 2

4 0 2 0 . . .

y 0 1 1 3

7 7 9 9 . . .
I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Translate into Java syntax:

class Sum {

int m;

void reset (){ m = 0; }

int step(int x){

int y;

y = x + m;

m = y;

return y;

}

}

I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Translate into Java syntax:

class Sum {

int m;

void reset (){ m = 0; }

int step(int x){

int y;

y = x + m;

m = y;

return y;

}

}

I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Translate into Java syntax:

class Sum {

int m;

void reset (){ m = 0; }

int step(int x){

int y;

y = x + m;

m = y;

return y;

}

}

I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.

3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Translate into Java syntax:

class Sum {

int m;

void reset (){ m = 0; }

int step(int x){

int y;

y = x + m;

m = y;

return y;

}

}

I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.
3 / 19

Introduction, Heptagon a Lustre/Scade-like language

node sum(x:int)=(y:int)

var m :int;

let

m = 0 fby y;

y = x + m;

tel

Translate into Java syntax:

class Sum {

int m;

void reset (){ m = 0; }

int step(int x){

int y;

y = x + m;

m = y;

return y;

}

}

I Modular compilation, each node is compiled into a class.

I Synchronous registers are instance variables.

I Initialisation (and reinitialisation) method.

I Step method, with in place update of the state.
3 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1 2 3 4 . . .

big = period3() true false false true false . . .

xt = x when big 0 . . 3

xf = x whenot big . 1 2 . 4 . . .

y = merge big xt xf 0 1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1 2 3 4 . . .

big = period3() true false false true false . . .

xt = x when big 0 . . 3

xf = x whenot big . 1 2 . 4 . . .

y = merge big xt xf 0 1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0

1 2 3 4 . . .

big = period3() true

false false true false . . .

xt = x when big

0 . . 3

xf = x whenot big

. 1 2 . 4 . . .

y = merge big xt xf

0 1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0

1 2 3 4 . . .

big = period3() true

false false true false . . .

xt = x when big 0

. . 3

xf = x whenot big .

1 2 . 4 . . .

y = merge big xt xf

0 1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0

1 2 3 4 . . .

big = period3() true

false false true false . . .

xt = x when big 0

. . 3

xf = x whenot big .

1 2 . 4 . . .

y = merge big xt xf 0

1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1

2 3 4 . . .

big = period3() true false

false true false . . .

xt = x when big 0

. . 3

xf = x whenot big .

1 2 . 4 . . .

y = merge big xt xf 0

1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1

2 3 4 . . .

big = period3() true false

false true false . . .

xt = x when big 0 .

. 3

xf = x whenot big . 1

2 . 4 . . .

y = merge big xt xf 0

1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1

2 3 4 . . .

big = period3() true false

false true false . . .

xt = x when big 0 .

. 3

xf = x whenot big . 1

2 . 4 . . .

y = merge big xt xf 0 1

2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1 2

3 4 . . .

big = period3() true false false

true false . . .

xt = x when big 0 . .

3

xf = x whenot big . 1 2

. 4 . . .

y = merge big xt xf 0 1 2

3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

Sampling and complementing streams: when and merge

Two core data-flow operators to manipulate streams:

I when: the sampling operator

I merge: the (lazy) complementing operator

x 0 1 2 3 4 . . .

big = period3() true false false true false . . .

xt = x when big 0 . . 3

xf = x whenot big . 1 2 . 4 . . .

y = merge big xt xf 0 1 2 3 4 . . .

I whenot = when not

I (.) = absence of value

I merge is lazy , its inputs have to arrive only when needed.

I The compiler computes correct rhythm for every stream.

4 / 19

The slow fast classical exemple

ys = 0 fby slow(1, ys);

ys 0 3.14 6.28 9.42 12.56 . . .

I slow: step integration with horizon of 1 second.

I fast: fast approximate with horizon of 1/3 second.

I We use the correct value when possible.

I And complement with the approximate one.

5 / 19

The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast(1, yf);

ys 0 3.14 6.28 9.42 12.56 . . .

yf 0 3 6 9 12 . . .

I slow: step integration with horizon of 1 second.

I fast: fast approximate

with horizon of 1/3 second.

I We use the correct value when possible.

I And complement with the approximate one.

5 / 19

The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast(1/3, yf);

ys 0 3.14 6.28 9.42 12.56 . . .

yf 0 1 2 3 4 5 6 7 8 9 10 . . .

I slow: step integration with horizon of 1 second.

I fast: fast approximate with horizon of 1/3 second.

I We use the correct value when possible.

I And complement with the approximate one.

5 / 19

The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, yf);

big = period3 ();

y = merge big ys (yf whenot big);

big true false false true false false true false . . .

ys 0 . . 3.14 . . 6.28

yf 0 1 2 3 4 5 6 7 . . .

y 0 1 2 3.14 4 5 6.28 7 . . .

I slow: step integration with horizon of 1 second.

I fast: fast approximate with horizon of 1/3 second.

I We use the correct value when possible.

I And complement with the approximate one.

5 / 19

The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, yf);

big = period3 ();

y = merge big ys (yf whenot big);

big true false false true false false true false . . .

ys 0 . . 3.14 . . 6.28

yf 0 1 2 3 4 5 6 7 . . .

y 0 1 2 3.14 4 5 6.28 7 . . .

I slow: step integration with horizon of 1 second.

I fast: fast approximate with horizon of 1/3 second.

I We use the correct value when possible.

I And complement with the approximate one.

5 / 19

The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

big true false false true false false true false . . .

ys 0 . . 3.14 . . 6.28

yf 0 1 2 3 4.14 5.14 6.14 7.28 . . .

y 0 1 2 3.14 4.14 5.14 6.28 7.28 . . .

I slow: step integration with horizon of 1 second.

I fast: fast approximate with horizon of 1/3 second.

I We use the correct value when possible.

I And complement with the approximate one.

5 / 19

The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

big true false false true false false true false . . .

ys 0 . . 3.14 . . 6.28

yf 0 1 2 3 4.14 5.14 6.14 7.28 . . .

y 0 1 2 3.14 4.14 5.14 6.28 7.28 . . .

We would like to run them in parallel:

5 / 19

The slow fast classical exemple

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

big true false false true false false true false . . .

ys 0 . . 3.14 . . 6.28

yf 0 1 2 3 4.14 5.14 6.14 7.28 . . .

y 0 1 2 3.14 4.14 5.14 6.28 7.28 . . .

This is what happens, unfortunately:

5 / 19

Synchronous register are synchronous
classSlow_fast {

Fast fast;

Slow slow;

Period3 period3;

float m;
float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;

m2 = 0.f;

}

floatstep () {
float y;

boolean big;

big = period3.step ();

if (big) {

y = m;

m = slow.step(1.f, y);
} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;
}

}

Reminder:
I y gets the value of the register m.

I During the same step, m is
updated for the next time.

This sequential compilation is:

I very efficient and simple

I traceable

I used and certified in Scade 6

But it prevents parallelization across
step boundaries.

Ocrep by A. Girault
The distributed imperative code is
optimized to bypass the synchronous
register.

6 / 19

Synchronous register are synchronous
classSlow_fast {

Fast fast;

Slow slow;

Period3 period3;

float m;
float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;

m2 = 0.f;

}

floatstep () {
float y;

boolean big;

big = period3.step ();

if (big) {

y = m;

m = slow.step(1.f, y);
} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;
}

}

Reminder:
I y gets the value of the register m.

I During the same step, m is
updated for the next time.

This sequential compilation is:

I very efficient and simple

I traceable

I used and certified in Scade 6

But it prevents parallelization across
step boundaries.

Ocrep by A. Girault
The distributed imperative code is
optimized to bypass the synchronous
register.

6 / 19

Synchronous register are synchronous
classSlow_fast {

Fast fast;

Slow slow;

Period3 period3;

float m;
float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;

m2 = 0.f;

}

floatstep () {
float y;

boolean big;

big = period3.step ();

if (big) {

y = m;

m = slow.step(1.f, y);
} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;
}

}

Reminder:
I y gets the value of the register m.

I During the same step, m is
updated for the next time.

This sequential compilation is:

I very efficient and simple

I traceable

I used and certified in Scade 6

But it prevents parallelization across
step boundaries.

Ocrep by A. Girault
The distributed imperative code is
optimized to bypass the synchronous
register.

6 / 19

Decoupling slow fast with futures

node slow_fast () = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We had this:

7 / 19

Decoupling slow fast with futures

node slow_fast () = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We want this:

7 / 19

Decoupling slow fast with futures

node slow_fast () = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby slow(1, ys);

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19

Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :float

let

ys = 0 fby (async slow(1, ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19

Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :future float

let

ys = (async 0) fby (async slow(1, ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19

Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :future float

let

ys = (async 0) fby (async slow(1, ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big !ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19

Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :future float

let

ys = (async 0) fby (async slow(1, !ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big !ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19

Decoupling slow fast with futures

node slow_fast_a () = (y :float)

var big :bool; yf :float; ys :future float

let

ys = (async 0) fby (async slow(1, !ys));

yf = 0 fby fast (1/3, y);

big = period3 ();

y = merge big !ys (yf whenot big);

tel

We can use futures as proxies:

7 / 19

Futures

I Futures appears in MultiLisp by Halstead 1985.

I Are now in most functional languages and Java, C++, etc.

I Depending on language integration, it can be a mere library.

What is a future?
It is a value, which will hold the result of a closed term.
Intuitively, it is a promise of result that is bound to come.

To guarantee futures integrity in Heptagon:

I future t is an abstract type, with t being the result type.
I A future may only be created from:

I Constants: async 42
I Asynchronous function calls: async f(x,y)

I !x “get” the result held by the future x — it is blocking .

8 / 19

Futures

I Futures appears in MultiLisp by Halstead 1985.

I Are now in most functional languages and Java, C++, etc.

I Depending on language integration, it can be a mere library.

What is the future?

It is a value, which will hold the result of a closed term.
Intuitively, it is a promise of result that is bound to come.

To guarantee futures integrity in Heptagon:

I future t is an abstract type, with t being the result type.
I A future may only be created from:

I Constants: async 42
I Asynchronous function calls: async f(x,y)

I !x “get” the result held by the future x — it is blocking .

8 / 19

Futures

I Futures appears in MultiLisp by Halstead 1985.

I Are now in most functional languages and Java, C++, etc.

I Depending on language integration, it can be a mere library.

What is a future?

It is a value, which will hold the result of a closed term.
Intuitively, it is a promise of result that is bound to come.

To guarantee futures integrity in Heptagon:

I future t is an abstract type, with t being the result type.
I A future may only be created from:

I Constants: async 42
I Asynchronous function calls: async f(x,y)

I !x “get” the result held by the future x — it is blocking .

8 / 19

Futures

I Futures appears in MultiLisp by Halstead 1985.

I Are now in most functional languages and Java, C++, etc.

I Depending on language integration, it can be a mere library.

What is a future?
It is a value, which will hold the result of a closed term.

Intuitively, it is a promise of result that is bound to come.

To guarantee futures integrity in Heptagon:

I future t is an abstract type, with t being the result type.
I A future may only be created from:

I Constants: async 42
I Asynchronous function calls: async f(x,y)

I !x “get” the result held by the future x — it is blocking .

8 / 19

Futures

I Futures appears in MultiLisp by Halstead 1985.

I Are now in most functional languages and Java, C++, etc.

I Depending on language integration, it can be a mere library.

What is a future?
It is a value, which will hold the result of a closed term.
Intuitively, it is a promise of result that is bound to come.

To guarantee futures integrity in Heptagon:

I future t is an abstract type, with t being the result type.
I A future may only be created from:

I Constants: async 42
I Asynchronous function calls: async f(x,y)

I !x “get” the result held by the future x — it is blocking .

8 / 19

Futures

I Futures appears in MultiLisp by Halstead 1985.

I Are now in most functional languages and Java, C++, etc.

I Depending on language integration, it can be a mere library.

What is a future?
It is a value, which will hold the result of a closed term.
Intuitively, it is a promise of result that is bound to come.

To guarantee futures integrity in Heptagon:

I future t is an abstract type, with t being the result type.
I A future may only be created from:

I Constants: async 42
I Asynchronous function calls: async f(x,y)

I !x “get” the result held by the future x — it is blocking .

8 / 19

Unchanged compilation: find the 4 differences
class Slow_fast {

Fast fast;

Slow slow;

Period3 period3;

float m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;

m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m;

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

class Slow_fast_a {

Fast fast;

Async <Slow > slow;

Period3 period3;

Future <float > m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = new Future (0.f);

m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m.get();

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

9 / 19

Unchanged compilation: find the 4 differences
class Slow_fast {

Fast fast;

Slow slow;
Period3 period3;

float m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;

m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m;

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

class Slow_fast_a {

Fast fast;

Async<Slow> slow;
Period3 period3;

Future <float > m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = new Future (0.f);

m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m.get();

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

9 / 19

Unchanged compilation: find the 4 differences
class Slow_fast {

Fast fast;

Slow slow;
Period3 period3;

float m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;

m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m;

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

class Slow_fast_a {

Fast fast;

Async<Slow> slow;
Period3 period3;

Future<float> m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = new Future (0.f);

m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m.get();

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

9 / 19

Unchanged compilation: find the 4 differences

class Slow_fast {

Fast fast;

Slow slow;
Period3 period3;

float m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;
m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m;

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

class Slow_fast_a {

Fast fast;

Async<Slow> slow;
Period3 period3;

Future<float> m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = new Future(0.f);
m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m.get();

m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

9 / 19

Unchanged compilation: find the 4 differences

class Slow_fast {

Fast fast;

Slow slow;
Period3 period3;

float m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = 0.f;
m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m;
m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

class Slow_fast_a {

Fast fast;

Async<Slow> slow;
Period3 period3;

Future<float> m; float m2;

void reset () {

period3.reset ();

slow.reset ();

fast.reset ();

m = new Future(0.f);
m2 = 0.f;

}

float step () {

float y;

boolean big = period3.step ();

if (big) {

y = m.get();
m = slow.step (1.f, y);

} else {

y = m2;

}

m2 = fast.step (0.3f,y);

return y;

}

}

9 / 19

The async wrapper

The async wrapper

I runs asynchronously a node in a worker thread.
I behaves like a node:

I step
I At each input a future is returned.
I Inputs are fed to the wrapped node through a buffer.

I reset is done so as to allow data-parallelism.

Two exemples to illustrate

I the need of an input buffer to allow decoupling

I the use of reset to enable data-parallelism

10 / 19

The async wrapper

The async wrapper

I runs asynchronously a node in a worker thread.
I behaves like a node:

I step
I At each input a future is returned.
I Inputs are fed to the wrapped node through a buffer.

I reset is done so as to allow data-parallelism.

Two exemples to illustrate

I the need of an input buffer to allow decoupling

I the use of reset to enable data-parallelism

10 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true false false true . . .

y0 1 2 3 4 5 6 7 . . .

y1 2 4 6 8 10 12 14 . . .

y 3 . . 12 . . 21 . . .

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true

false false true false false true . . .

y0 1

2 3 4 5 6 7 . . .

y1 2

4 6 8 10 12 14 . . .

y 3

. . 12 . . 21 . . .

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false

false true false false true . . .

y0 1 2

3 4 5 6 7 . . .

y1 2 4

6 8 10 12 14 . . .

y 3 .

. 12 . . 21 . . .

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false

true false false true . . .

y0 1 2 3

4 5 6 7 . . .

y1 2 4 6

8 10 12 14 . . .

y 3 . .

12 . . 21 . . .

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true

false false true . . .

y0 1 2 3 4

5 6 7 . . .

y1 2 4 6 8

10 12 14 . . .

y 3 . . 12

. . 21 . . .

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true false false true . . .

y0 1 2 3 4 5 6 7 . . .

y1 2 4 6 8 10 12 14 . . .

y 3 . . 12 . . 21 . . .

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true false false true . . .

y0 1 2 3 4 5 6 7 . . .

y1 2 4 6 8 10 12 14 . . .

y 3 . . 12 . . 21 . . .

Consider sum takes a variable time to execute

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true false false true . . .

y0 1 2 3 4 5 6 7 . . .

y1 2 4 6 8 10 12 14 . . .

y 3 . . 12 . . 21 . . .

Consider sum takes a variable time to execute, then:

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true false false true . . .

y0 1 2 3 4 5 6 7 . . .

y1 2 4 6 8 10 12 14 . . .

y 3 . . 12 . . 21 . . .

We would like to smooth out this variability:

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true false false true . . .

y0 1 2 3 4 5 6 7 . . .

y1 2 4 6 8 10 12 14 . . .

y 3 . . 12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

y0 = sum (1);

y1 = sum (2);

y = (y0 when c) + (y1 when c);

c true false false true false false true . . .

y0 1 2 3 4 5 6 7 . . .

y1 2 4 6 8 10 12 14 . . .

y 3 . . 12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async sum (1);

ay1 = async sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0

a00 a10 a20 a30 a40 a50 a60 . . .

ay1

a01 a11 a21 a31 a41 a51 a61 . . .

y

3 . . 12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async sum (1);

ay1 = async sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0 a00

a10 a20 a30 a40 a50 a60 . . .

ay1 a01

a11 a21 a31 a41 a51 a61 . . .

y !a00+!a01

. . 12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async sum (1);

ay1 = async sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0 a00

a10 a20 a30 a40 a50 a60 . . .

ay1 a01

a11 a21 a31 a41 a51 a61 . . .

y 3

. . 12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async sum (1);

ay1 = async sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0 a00 a10

a20 a30 a40 a50 a60 . . .

ay1 a01 a11

a21 a31 a41 a51 a61 . . .

y 3 .

. 12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async sum (1);

ay1 = async sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0 a00 a10 a20

a30 a40 a50 a60 . . .

ay1 a01 a11 a21

a31 a41 a51 a61 . . .

y 3 . .

12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async sum (1);

ay1 = async sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0 a00 a10 a20 a30

a40 a50 a60 . . .

ay1 a01 a11 a21 a31

a41 a51 a61 . . .

y 3 . . !a30+!a31

. . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async sum (1);

ay1 = async sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0 a00 a10 a20 a30

a40 a50 a60 . . .

ay1 a01 a11 a21 a31

a41 a51 a61 . . .

y 3 . . 12

. . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async sum (1);

ay1 = async sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0 a00 a10 a20 a30 a40 a50 a60 . . .

ay1 a01 a11 a21 a31 a41 a51 a61 . . .

y 3 . . 12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Partial Decoupling
c = period3 ();

ay0 = async <<3>> sum (1);

ay1 = async <<3>> sum (2);

y = !(ay0 when c) + !(ay1 when c);

c true false false true false false true . . .

ay0 a00 a10 a20 a30 a40 a50 a60 . . .

ay1 a01 a11 a21 a31 a41 a51 a61 . . .

y 3 . . 12 . . 21 . . .

We would like to smooth out this variability with futures:

11 / 19

Decoupling

Decoupling is dictated by:

I the size of the async input buffer

I the moment we get the result

Last exemple was partial decoupling because periodically we
required the result of the current instant.

Decoupling of n instants requires:

I an input buffer of size n

I a delay of n instant on the result

This is written:

Decoupling is always statically bounded

12 / 19

Decoupling

Decoupling is dictated by:

I the size of the async input buffer

I the moment we get the result

Last exemple was partial decoupling because periodically we
required the result of the current instant.

Decoupling of n instants requires:

I an input buffer of size n

I a delay of n instant on the result

This is written:

Decoupling is always statically bounded

12 / 19

Decoupling

Decoupling is dictated by:

I the size of the async input buffer

I the moment we get the result

Last exemple was partial decoupling because periodically we
required the result of the current instant.

Decoupling of n instants requires:

I an input buffer of size n

I a delay of n instant on the result

This is written:

Decoupling is always statically bounded

12 / 19

Decoupling

Decoupling is dictated by:

I the size of the async input buffer

I the moment we get the result

Last exemple was partial decoupling because periodically we
required the result of the current instant.

Decoupling of n instants requires:

I an input buffer of size n

I a delay of n instant on the result

This is written:
async<<n>> f(x)

Decoupling is always statically bounded

12 / 19

Decoupling

Decoupling is dictated by:

I the size of the async input buffer

I the moment we get the result

Last exemple was partial decoupling because periodically we
required the result of the current instant.

Decoupling of n instants requires:

I an input buffer of size n

I a delay of n instant on the result

This is written:
async 0 fby<<n>> (async<<n>> f(x))

Decoupling is always statically bounded

12 / 19

Decoupling

Decoupling is dictated by:

I the size of the async input buffer

I the moment we get the result

Last exemple was partial decoupling because periodically we
required the result of the current instant.

Decoupling of n instants requires:

I an input buffer of size n

I a delay of n instant on the result

This is written:
!(async 0 fby<<n>> (async<<n>> f(x)))

Decoupling is always statically bounded

12 / 19

Decoupling

Decoupling is dictated by:

I the size of the async input buffer

I the moment we get the result

Last exemple was partial decoupling because periodically we
required the result of the current instant.

Decoupling of n instants requires:

I an input buffer of size n

I a delay of n instant on the result

This is written:
!(async 0 fby<<n>> (async<<n>> f(x)))

Decoupling is always statically bounded

12 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4 5 6 7 . . .

c true false true false true false true . . .

m 0 1 0 3 0 5 0 . . .

y 1 3 3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1

2 3 4 5 6 7 . . .

c true

false true false true false true . . .

m 0

1 0 3 0 5 0 . . .

y

1 3 3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1

2 3 4 5 6 7 . . .

c true

false true false true false true . . .

m 0

1 0 3 0 5 0 . . .

y 1

3 3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1

2 3 4 5 6 7 . . .

c true

false true false true false true . . .

m 0

1 0 3 0 5 0 . . .

y 1

3 3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2

3 4 5 6 7 . . .

c true false

true false true false true . . .

m 0 1

0 3 0 5 0 . . .

y 1

3 3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2

3 4 5 6 7 . . .

c true false

true false true false true . . .

m 0 1

0 3 0 5 0 . . .

y 1 3

3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2

3 4 5 6 7 . . .

c true false

true false true false true . . .

m 0 1 3

3 0 5 0 . . .

y 1 3

3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3

4 5 6 7 . . .

c true false true

false true false true . . .

m 0 1 0

3 0 5 0 . . .

y 1 3

3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3

4 5 6 7 . . .

c true false true

false true false true . . .

m 0 1 0

3 0 5 0 . . .

y 1 3

3 7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3

4 5 6 7 . . .

c true false true

false true false true . . .

m 0 1 0

3 0 5 0 . . .

y 1 3 3

7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4

5 6 7 . . .

c true false true false

true false true . . .

m 0 1 0

3 0 5 0 . . .

y 1 3 3

7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4

5 6 7 . . .

c true false true false

true false true . . .

m 0 1 0 3

0 5 0 . . .

y 1 3 3

7 5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4

5 6 7 . . .

c true false true false

true false true . . .

m 0 1 0 3

0 5 0 . . .

y 1 3 3 7

5 3 7 . . .

13 / 19

Resetting a node: the every keyword

c = period2 ();

y = sum(x) every c;

Resetting is done prior to the call to the node:
x 1 2 3 4 5 6 7 . . .

c true false true false true false true . . .

m 0 1 0 3 0 5 0 . . .

y 1 3 3 7 5 3 7 . . .

13 / 19

Data-parallelism

c = period2 ();

y = sum(x) every c;

I Reset removes dependencies, enabling data-parallelism.

I Decoupling of at least 2 instants is required.

Thread number is static and explicit, here 2 are needed.

14 / 19

Data-parallelism

c = period2 ();

ay = async <<2>> sum(x) every c;

I Reset removes dependencies, enabling data-parallelism.

I Decoupling of at least 2 instants is required.

Thread number is static and explicit, here 2 are needed.

14 / 19

Data-parallelism

c = period2 ();

ay = async <<2>> sum(x) every c;

y = !(async 0 fby <<2>> ay);

I Reset removes dependencies, enabling data-parallelism.

I Decoupling of at least 2 instants is required.

Thread number is static and explicit, here 2 are needed.

14 / 19

Data-parallelism

c = period2 ();

ay = async <<2>> sum(x) every c;

y = !(async 0 fby <<2>> ay);

I Reset removes dependencies, enabling data-parallelism.

I Decoupling of at least 2 instants is required.

Thread number is static and explicit, here 2 are needed.

14 / 19

Data-parallelism

c = period2 ();

ay = async <<2,2>> sum(x) every c;

y = !(async 0 fby <<2>> ay);

I Reset removes dependencies, enabling data-parallelism.

I Decoupling of at least 2 instants is required.

Thread number is static and explicit, here 2 are needed.

14 / 19

Memory management

A future
I is a shared object with one producer, multiple consumers

I may be stored and used later on

I may not be used

I may not depend on previous ones

Without restrictions, the live-range of a future is undecidable and
a concurrent gc is needed, as the one of java.

Memory boundedness
Alive futures are bounded by the number of synchronous registers.
A slab allocator is possible with static allocation and reuse.

Scope restriction for node level memory management
Preventing futures to be returned or passed to an async call,
allows gc and slab to be synchronous and node local .

15 / 19

Memory management

A future
I is a shared object with one producer, multiple consumers

I may be stored and used later on

I may not be used

I may not depend on previous ones

Without restrictions, the live-range of a future is undecidable and
a concurrent gc is needed, as the one of java.

Memory boundedness
Alive futures are bounded by the number of synchronous registers.
A slab allocator is possible with static allocation and reuse.

Scope restriction for node level memory management
Preventing futures to be returned or passed to an async call,
allows gc and slab to be synchronous and node local .

15 / 19

Memory management

A future
I is a shared object with one producer, multiple consumers

I may be stored and used later on

I may not be used

I may not depend on previous ones

Without restrictions, the live-range of a future is undecidable and
a concurrent gc is needed, as the one of java.

Memory boundedness
Alive futures are bounded by the number of synchronous registers.
A slab allocator is possible with static allocation and reuse.

Scope restriction for node level memory management
Preventing futures to be returned or passed to an async call,
allows gc and slab to be synchronous and node local .

15 / 19

Memory management

A future
I is a shared object with one producer, multiple consumers

I may be stored and used later on

I may not be used

I may not depend on previous ones

Without restrictions, the live-range of a future is undecidable and
a concurrent gc is needed, as the one of java.

Memory boundedness
Alive futures are bounded by the number of synchronous registers.
A slab allocator is possible with static allocation and reuse.

Scope restriction for node level memory management
Preventing futures to be returned or passed to an async call,
allows gc and slab to be synchronous and node local .

15 / 19

Backends

Existing Java backend
Everything shown was generated with our Java backend.

I Futures are the ones of Java

I Static queues and worker threads

I But dynamic allocation of futures

Existing C backend, aiming embedded systems

I Hand tailored futures, queues and threads

I SLAB local to each node

I Futures have scope restrictions

WIP OpenMP Stream backend
I Data-flow parallel runtime

I No thread burden

I May be used to handle large number of async

16 / 19

Backends

Existing Java backend
Everything shown was generated with our Java backend.

I Futures are the ones of Java

I Static queues and worker threads

I But dynamic allocation of futures

Existing C backend, aiming embedded systems

I Hand tailored futures, queues and threads

I SLAB local to each node

I Futures have scope restrictions

WIP OpenMP Stream backend
I Data-flow parallel runtime

I No thread burden

I May be used to handle large number of async

16 / 19

Backends

Existing Java backend
Everything shown was generated with our Java backend.

I Futures are the ones of Java

I Static queues and worker threads

I But dynamic allocation of futures

Existing C backend, aiming embedded systems

I Hand tailored futures, queues and threads

I SLAB local to each node

I Futures have scope restrictions

WIP OpenMP Stream backend
I Data-flow parallel runtime

I No thread burden

I May be used to handle large number of async

16 / 19

Code generation for embedded systems

async may be annotated with any needed static arguments.

Location annotations for distribution without scheduler:
I One thread per computing unit

I No surprise

I Usually not efficient

Priority annotations for EDF scheduling:

I Well known

I May be optimal

I Existing tools need to be adapted

Real time period annotations, etc.

17 / 19

Code generation for embedded systems

async may be annotated with any needed static arguments.

Location annotations for distribution without scheduler:
I One thread per computing unit

I No surprise

I Usually not efficient

Priority annotations for EDF scheduling:

I Well known

I May be optimal

I Existing tools need to be adapted

Real time period annotations, etc.

17 / 19

Code generation for embedded systems

async may be annotated with any needed static arguments.

Location annotations for distribution without scheduler:
I One thread per computing unit

I No surprise

I Usually not efficient

Priority annotations for EDF scheduling:

I Well known

I May be optimal

I Existing tools need to be adapted

Real time period annotations, etc.

17 / 19

Code generation for embedded systems

async may be annotated with any needed static arguments.

Location annotations for distribution without scheduler:
I One thread per computing unit

I No surprise

I Usually not efficient

Priority annotations for EDF scheduling:

I Well known

I May be optimal

I Existing tools need to be adapted

Real time period annotations, etc.

17 / 19

Conlusions

Semantics

Same semantics as the sequential program without async and !.

Expressivness

I Synchronous language: time programming

I Futures: decouple and make explicit beginning and end of
computations

I Together they allow for programing parallelism:
I decoupling, partial-decoupling,
I data-parallelism,
I fork-join, temporal fork-join,
I pipeline, etc.

Safety

I No deadlocks: futures in a pure language

I No dynamic memory allocation or thread creation

18 / 19

Synchronization on inputs

c = period3 ();

ay0 = async <<0>> sum (1);

ay1 = async <<0>> sum (2);

y = !(ay0 when c) + !(ay1 when c);

19 / 19

	Heptagon basics
	Problem statement
	slow_fast, a motivating exemple
	The issue

	Futures in Heptagon
	Using futures for the issue of slow_fast
	Overview of the compilation

	Expressiveness of futures
	Partial decoupling exemple
	Data-parallelism exemple

	Implementation highlights
	Conclusion

